Producing Or Treating Free Metal Patents (Class 75/392)
  • Publication number: 20120304822
    Abstract: This invention relates to a method and apparatus for gasifying or liquifying coal. In particular, the method comprises reacting a coal with a molten aluminum or aluminum alloy bath. The apparatus includes a reaction vessel for carrying out the reaction, as well as other equipment necessary for capturing and removing the reaction products. Further, the process can be used to cogenerate electricity using the excess heat generated by the process.
    Type: Application
    Filed: June 4, 2012
    Publication date: December 6, 2012
    Inventors: Ronald G. Presswood, JR., Ian C. Bishop
  • Publication number: 20120308917
    Abstract: One aspect of the invention is a method of surface alloying stainless steel, In one embodiment, the method includes providing a stainless steel surface having an initial amount of iron and an initial amount of chromium; and preferentially removing iron from the stainless steel surface to obtain a surface having an amount of iron less than the initial amount of iron and an amount of chromium greater than the initial amount of chromium. Another aspect of the invention is a unitary stainless steel article.
    Type: Application
    Filed: June 6, 2011
    Publication date: December 6, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Mahmoud H. Abd Elhamid, Gayatri Vyas Dadheech
  • Publication number: 20120301720
    Abstract: The present invention relates to methods for synthesis of metallic island coatings with tunable island coverage and morphology on a variety of substrates. Particularly, the present invention relates to substrates coated with one or more metal islands and the use of said island-coated substrates.
    Type: Application
    Filed: November 4, 2010
    Publication date: November 29, 2012
    Applicant: BASF SE
    Inventors: Wieland Koban, Wolfgang Peukert, Robin Klupp Taylor, Monica Distaso, Huixin Bao, Serhiy Vasylyev
  • Patent number: 8317895
    Abstract: A method for recovering valuable metals, which include at least one M element selected from the group consisting of Mo, Ni and Co, and V, in the form of iron-based alloys from a waste containing the valuable metals, comprising the steps of (a) roasting the waste to form a roasted ore containing oxides of the valuable metals; (b-1) heating the roasted ore together with an iron source and a flux, to form an iron-based alloy melt; (b-2) adding a reducing agent having higher affinity for oxygen than V at a reduction temperature to the melt, thereby reducing the oxides of the valuable metals to form an Fe-M-V alloy melt; (c) oxidizing substantially only V in the Fe-M-V alloy melt to form a V-oxide-containing slag and an Fe-M alloy melt; and (d) separating the V-oxide-containing slag from the Fe-M alloy melt.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: November 27, 2012
    Assignee: Kohsei Co., Ltd.
    Inventor: Mitsutoyo Komatani
  • Publication number: 20120289395
    Abstract: A multiphase composite system is made by binding hard particles, such as TiC particles, of various sizes with a mixture of titanium powder and aluminum, nickel, and titanium in a master alloy or as elemental materials to produce a composite system that has advantageous energy absorbing characteristics. The multiple phases of this composite system include an aggregate phase of hard particles bound with a matrix phase. The matrix phase has at least two phases with varying amounts of aluminum, nickel, and titanium. The matrix phase forms a bond with the hard particles and has varying degrees of hard and ductile phases. The composite system may be used alone or bonded to other materials such as bodies of titanium or ceramic in the manufacture of ballistic armor tiles.
    Type: Application
    Filed: July 24, 2012
    Publication date: November 15, 2012
    Inventor: Robert G. Lee
  • Publication number: 20120282347
    Abstract: Disclosed is a process for preparing silver ions (Ag+) comprising treating element metal silver (Ag0) under high temperature and high pressure, and quickly cooling to directly obtain the silver ions (Ag+).
    Type: Application
    Filed: November 6, 2009
    Publication date: November 8, 2012
    Inventor: Raymond Chin
  • Publication number: 20120282130
    Abstract: A carbothermic reduction method is provided for reducing a rare earth element-containing oxide including at least one of neodymium (Nd) and praseodymium (Pr) and possibly other rare earth elements (La, Ce, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, and Y) as alloying agents in the presence of carbon and a source of a reactant element including one or more of silicon, germanium, tin, lead, arsenic, antimony and bismuth to form a rare earth element-containing intermediate alloy as a master alloy for making permanent magnet material. The process is a more efficient, lower cost and environmentally friendly technology than current methods of manufacturing rare earth metals. The intermediate material is useful as a master alloy for making a permanent magnet material comprising at least one of neodymium and praseodymium, and possibly other rare earth metals as alloying additives.
    Type: Application
    Filed: April 18, 2012
    Publication date: November 8, 2012
    Inventors: Karl A. Gschneidner, JR., Frederick A. Schmidt, Ralph W. McCallum
  • Publication number: 20120263619
    Abstract: A method for preparing an article of a base metal alloyed with an alloying element includes the steps of preparing a compound mixture by the steps of providing a chemically reducible nonmetallic base-metal precursor compound of a base metal, providing a chemically reducible nonmetallic alloying-element precursor compound of an alloying element, and thereafter mixing the base-metal precursor compound and the alloying-element precursor compound to form a compound mixture. The compound mixture is thereafter reduced to a metallic alloy, without melting the metallic alloy. The step of preparing or the step of chemically reducing includes the step of adding an other additive constituent. The metallic alloy is thereafter consolidated to produce a consolidated metallic article, without melting the metallic alloy and without melting the consolidated metallic article.
    Type: Application
    Filed: June 15, 2012
    Publication date: October 18, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Andrew Philip WOODFIELD, Eric Allen OTT, Clifford Earl SHAMBLEN, Michael Francis Xavier GIGLIOTTI
  • Publication number: 20120260772
    Abstract: Methods and systems for processing an iron ore tailings byproduct are described. In one embodiment, a method for processing an iron ore tailings byproduct includes sizing particles within a slurry of the iron ore tailings byproduct to separate particles from the slurry having a dimension less than a predetermined size. After sizing, the method may further include centrifugating the particles less than the predetermined size into centrifugated concentrate and tails portions. The centrifugated concentrate portion may be separated into separated concentrate and tails portions. Finally, in certain embodiments, the separated concentrate portion may be de-watered to a remaining composition of matter comprising iron in greater proportion than in the iron ore tailings byproduct. Generally, using the systems and methods described herein, iron that would have otherwise been un-recovered is extracted from the iron ore tailings byproduct.
    Type: Application
    Filed: April 12, 2012
    Publication date: October 18, 2012
    Inventor: Thomas A. Valerio
  • Patent number: 8287772
    Abstract: A method of making nanostructured alloy particles includes milling a millbase in a pebble mill containing milling media. The millbase comprises: (i) silicon, and (ii) at least one of carbon or a transition metal, and wherein the nanostructured alloy particles are substantially free of crystalline domains greater than 50 nanometers in size. A method of making a negative electrode composition for a lithium ion battery including the nanostructured alloy particles is also disclosed.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: October 16, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Dinh B. Le, Mark N. Obrovac, Robert Y. Kube, James R. Landucci
  • Publication number: 20120241054
    Abstract: In various embodiments, metallic products are formed by alloying niobium with at least one of yttrium, aluminum, hafnium, titanium, zirconium, thorium, lanthanum, or cerium and processing the alloy.
    Type: Application
    Filed: May 3, 2012
    Publication date: September 27, 2012
    Inventor: Paul R. Aimone
  • Publication number: 20120237417
    Abstract: A method recovers noble metals from noble metal-containing compositions and includes steps of (i) providing a noble metal-containing composition containing an adsorption agent that is based on an inorganic material and is functionalized by organic groups and has at least one noble metal adsorbed to it, and (ii) ashing of the noble metal-containing composition provided in step (i) in order to adjust a residual carbon content of at most 10% by weight, relative to the total weight of the noble metal-containing composition after ashing, to obtain an ashed composition.
    Type: Application
    Filed: March 15, 2012
    Publication date: September 20, 2012
    Applicant: HERAEUS PRECIOUS METALS GMBH & CO. KG
    Inventors: Joachim Kralik, Martin Stettner, Stefanie Fuchs Alameda
  • Publication number: 20120219735
    Abstract: Disclosed are methods for producing carbon, metal and/or metal oxide porous materials that have precisely controlled structures on the nanometer and micrometer scales. The methods involve the single or repeated infiltration of porous templates with metal salts at controlled temperatures, the controlled drying and decomposition of the metal salts under reducing conditions, and optionally the removal of the template. The carbon porous materials are involve the infiltration of a carbon precursor into a porous template, followed by polymerization and pyrolysis. These porous materials have utility in separations, catalysis, among others.
    Type: Application
    Filed: February 27, 2012
    Publication date: August 30, 2012
    Applicant: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ALABAMA
    Inventors: Martin Bakker, Franchessa Maddox Sayler, Amy Grano, Jan-Henrik Smått
  • Publication number: 20120217446
    Abstract: An implementation of a Czochralski-type crystal growth has been shown and embodied. More particularly, a furnace with suitable insulation and flow arrangement is shown to improve the cost-efficiency of production of crystals. That is achieved by the shown new hot-zone structure, gas flows and the growth process which can decrease the power consumption, increase the lifetime of hot-zone parts and improve the productivity, e.g., by giving means for opening the hot-zone and easily adapting the hot-zone to a new crystal diameter.
    Type: Application
    Filed: March 9, 2012
    Publication date: August 30, 2012
    Inventors: Olli ANTTILA, Ari Saarnikko, Jari Paloheimo
  • Publication number: 20120213680
    Abstract: The present invention relates to processes for hydromethanating a nickel-containing (and optionally vanadium-containing) carbonaceous feedstock while recovering at least a portion of the nickel content (and optionally vanadium content) originally present in the carbonaceous feedstock.
    Type: Application
    Filed: February 22, 2012
    Publication date: August 23, 2012
    Applicant: GREATPOINT ENERGY, INC.
    Inventors: Alkis S. Rappas, Robert A. Spitz
  • Publication number: 20120210823
    Abstract: Disclosed is a method for hardening an interface of a carbon material by using nano silicon carbide coating. A carbon material-aluminum composite prepared by the disclosed method is light in weight, and has a high dynamic strength, and thus can be applied to currently used cars and aluminum wheels. Furthermore, the composite can be utilized as a material for aircrafts, spacecraft, ships, etc. requiring a high strength.
    Type: Application
    Filed: October 11, 2011
    Publication date: August 23, 2012
    Inventors: Young Hee LEE, Kang Pyo So, Eun Sun Kim, Young Woo Park
  • Publication number: 20120204681
    Abstract: A molybdenum refining method collects molybdenum with high purity and yield by simple means. The molybdenum refining method includes mixing and grinding a molybdenum ore or concentrate containing molybdenum sulfide, an oxidizing agent, and an alkali or alkaline earth metal salt to produce an alkali or alkaline earth metal salt of molybdic acid from molybdenum sulfide.
    Type: Application
    Filed: October 18, 2010
    Publication date: August 16, 2012
    Applicant: JFE MINERAL COMPANY, LTD.
    Inventor: Takahiro Shiokawa
  • Publication number: 20120198966
    Abstract: A method and system for making metallic iron nodules with reduced CO2 emissions is disclosed. The method includes: assembling a linear hearth furnace having entry and exit portions, at least a conversion zone and a fusion zone, and a moving hearth adapted to move reducible iron bearing material through the furnace on contiguous hearth sections; assembling a shrouded return substantially free of air ingress extending adjacent at least the conversion and fusion zones of the furnace through which hearth sections can move from adjacent the exit portion to adjacent the entry portion of the furnace; transferring the hearth sections from the furnace to the shrouded return adjacent the exit portion; reducing reducible material in the linear hearth furnace to metallic iron nodules; and transporting porting gases from at least the fusion zone to the shrouded return to heat the hearth sections while in the shrouded return.
    Type: Application
    Filed: September 28, 2010
    Publication date: August 9, 2012
    Applicant: NU-IRON TECHNOLOGY, LLC
    Inventors: Richard F. Kiesel, David J. Englund, Mark Schlichting, John Meehan, Jeremiah Crouch, Logan Wilson
  • Publication number: 20120187315
    Abstract: In one embodiment, a neutron shielding material is formed of boron-adding stainless steel of either austenite-ferrite two-phase stainless steel or ferritic stainless steel, the austenite-ferrite two-phase stainless steel containing, in mass %, B: 0.5% to 2.0%, Ni: 3.0 to 10.0%, and Cr: 21.00 to 32.00%, the ferritic stainless steel containing, in mass %, B: 0.5% to 2.0%, Ni: 4.0% or less, and Cr: 11.00 to 32.00%, and the boron-adding stainless steel being well in ductility and thermal conduction property.
    Type: Application
    Filed: January 27, 2012
    Publication date: July 26, 2012
    Inventors: Masanori KIBATA, Yuuji SAITO, Motoji TSUBOTA, Yoshitaka DOKEN, Makoto SATO, Shunichi HATANO, Masanori ISHIGA, Go ONO
  • Publication number: 20120186395
    Abstract: Disclosed is a method for producing briquettes, by which briquettes having enhanced strength can be produced even when the amount of a binder used therefor is reduced as much as possible. Specifically disclosed is a method for producing briquettes, which comprises: a step of forming a primary granular material having an apparent density of 1,000 to 4,000 kg/m3 using a powder of metal oxides including iron oxide and one or more oxides selected from among of zinc oxide, lead oxide, and titanium oxide; and a step of forming a secondary granular material by compressing a plurality of primary granular materials, while having the primary granular materials contain one or more metal oxides selected from among the zinc oxide, lead oxide, and titanium oxide.
    Type: Application
    Filed: September 24, 2010
    Publication date: July 26, 2012
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Takao Harada, Haruyasu Michishita, Yutaka Miyakawa, Koijiro Fuji, Noriaki Mizutani
  • Publication number: 20120174712
    Abstract: Compositions comprising a tripeptide having the sequence XC1C2; wherein X is any amino acid such that XC1C2 is capable of binding a metal in a square planar orientation or square pyramidal orientation or both; and wherein C1 and C2 are the same or different; and wherein C1 and C2 individually are chosen from a cysteine and a cysteine-like nonnatural amino acid, as well as metal-XC1C2 complexes and methods for forming such complexes.
    Type: Application
    Filed: March 23, 2012
    Publication date: July 12, 2012
    Applicant: University of Kansas
    Inventors: Jennifer Ann Stowell Laurence, Anthony Andrew Vartia, Mary Elizabeth Krause
  • Publication number: 20120174710
    Abstract: In a process and apparatus for the reduction of metal oxides to form metalized material by contact with hot reducing gas, which is produced at least partially by catalytic reformation of a mixture of—a gas containing carbon dioxide (CO2) and/or steam (H2O) with—gaseous hydrocarbons, the fuel gas for burners which provide the heat for the endothermal reformation processes which take place during the reformation is obtained at least partially from a partial quantity of the top gas produced during the reduction of metal oxides to form metalized material, wherein this partial quantity of the top gas, before it is used as a component of the fuel gas, is firstly subjected to dedusting and then to a CO conversion reaction, and the conversion gas obtained during the CO conversion reaction is subjected to CO2 removal after cooling.
    Type: Application
    Filed: July 14, 2010
    Publication date: July 12, 2012
    Applicant: SIEMENS VAI METALS TECHNOLOGIES GMBH
    Inventors: Robert Millner, Guenter Peer
  • Publication number: 20120174711
    Abstract: Provided is an apparatus for manufacturing reduced iron and a method for manufacturing reduced iron. The method for manufacturing reduced iron includes the steps of: i) drying ores in an ore drier; ii) supplying the dried ores to at least one reduction reactor; iii) reducing the ores in the at least one reduction reactor and manufacturing reduced iron; iv) discharging exhaust gas by which the ores are reduced in the reduction reactor; v) branching the exhaust gas and providing the branched exhaust gas as ore feeding gas; and vi) exchanging heat between the exhaust gas and the ore feeding gas and transferring the sensible heat of the exhaust gas to the ore feeding gas. In the steps of supplying the dried ores to the at least one reduction reactor, the dried ores are supplied to the at least one reduction reactor by using the ore feeding gas.
    Type: Application
    Filed: July 14, 2010
    Publication date: July 12, 2012
    Applicant: POSCO
    Inventors: Myoung-Kyun Shin, Dong-Won Kim, Sang-Hyun Kim, Jun-Hyuk Lee
  • Publication number: 20120167714
    Abstract: Systems and methods for processing sludge from a fume scrubbing system that scrubs fumes from a steelmaking converter in a manner that separates/isolates a significant portion of the metallic iron particles in the sludge and prepares these particles for convenient handling. In an exemplary system, the system includes separating equipment that isolates metallic iron particles in the sludge and forming equipment that forms the isolated particles into briquettes that have relatively high mechanical resistance that allow the briquettes to maintain their integrity during handling and storage. The high-metallic-iron-content briquettes can be recycled in the steelmaking process, for example, as charging material for a basic oxygen converter or an electric arc furnace. Water used in the system can be recycled and reused within the system, thereby making the system environmentally friendly.
    Type: Application
    Filed: January 4, 2011
    Publication date: July 5, 2012
    Inventors: Guilherme Santana Lopes Gomes, Victor Loureiro Dos Santos
  • Patent number: 8211388
    Abstract: In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: July 3, 2012
    Assignee: Brigham Young University
    Inventors: Brian F. Woodfield, Shengfeng Liu, Juliana Boerio-Goates, Qingyuan Liu, Stacey Janel Smith
  • Publication number: 20120160062
    Abstract: In a process and apparatus for the reduction of metal oxides (3) to form metalized material by contact with hot reducing gas, which is produced at least partially by catalytic reformation of a mixture of a gas containing carbon dioxide (CO2) and/or steam (H2O) with gaseous hydrocarbons, the heat for the endothermal reformation processes which take place during the reformation is provided at least partially by the combustion of a fuel gas.
    Type: Application
    Filed: July 15, 2010
    Publication date: June 28, 2012
    Inventors: Robert Millner, Guenter Peer
  • Publication number: 20120152061
    Abstract: The present invention provides a method for producing direct reduced iron and/or hot metal using high-moisture content carbonaceous material, including: agglomerating carbonaceous material from the high-moisture content carbonaceous material with a metal oxide-bearing material to form an agglomerate suitable for use in a direct reduction and/or hot metal producing process. The method also includes distilling the high-moisture content carbonaceous material. The method further includes dry quenching the carbonaceous material obtained from the distilling step. The method still further includes drying the high-moisture content carbonaceous material with energy from a hot off gas from a furnace for producing direct reduced iron and/or hot metal prior to the distilling step.
    Type: Application
    Filed: December 14, 2011
    Publication date: June 21, 2012
    Applicant: MIDREX TECHNOLOGIES, INC.
    Inventors: MASAHIKO TETSUMOTO, TODD ASTORIA
  • Publication number: 20120152062
    Abstract: A method for recovering at least one rare earth element from a phosphor is presented. The method includes a halogenation step (a) and a reduction step (b). The phosphor is first halogenated in a molten salt to convert at least one rare earth constituent contained therein to a soluble rare earth halide. Then, the rare earth halide in the molten salt can be reduced, to convert the rare earth halide to a rare earth element in its elemental state. A method for individually recovering multiple rare earth elements from a phosphor is also presented.
    Type: Application
    Filed: December 20, 2010
    Publication date: June 21, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Karthick Vilapakkam Gourishankar, Alok Mani Srivastava, Prasanth Kumar Nammalwar, Satya Kishore Manepalli
  • Publication number: 20120148844
    Abstract: Nanomaterial preparation methods, compositions, and articles are disclosed and claimed. Such methods can provide nanomaterials with improved morphologies relative to previous methods. Such materials are useful in electronic applications.
    Type: Application
    Filed: November 8, 2011
    Publication date: June 14, 2012
    Inventor: David R. Whitcomb
  • Publication number: 20120148436
    Abstract: Nanomaterial preparation methods, compositions, and articles are disclosed and claimed. Such methods can provide nanomaterials with improved morphologies relative to previous methods. Such materials are useful in electronic applications.
    Type: Application
    Filed: November 4, 2011
    Publication date: June 14, 2012
    Inventors: David R. Whitcomb, William D. Ramsden, Doreen C. Lynch
  • Publication number: 20120148442
    Abstract: Nanomaterial preparation methods, compositions, and articles are disclosed and claimed. Such methods can provide nanomaterials with improved morphologies and reduced nitric oxide co-production relative to previous methods. Such materials are useful in electronic applications.
    Type: Application
    Filed: November 4, 2011
    Publication date: June 14, 2012
    Inventors: David R. Whitcomb, William D. Ramsden
  • Publication number: 20120148861
    Abstract: Nanomaterial preparation methods, compositions, and articles are disclosed and claimed. Such methods can provide nanomaterials with improved morphologies relative to previous methods. Such materials are useful in electronic applications.
    Type: Application
    Filed: November 8, 2011
    Publication date: June 14, 2012
    Inventors: David R. Whitcomb, William D. Ramsden, Doreen C. Lynch
  • Publication number: 20120148438
    Abstract: Nanomaterial preparation methods, compositions, and articles are disclosed and claimed. Such methods can provide nanomaterials with improved morphologies relative to previous methods. Such materials are useful in electronic applications.
    Type: Application
    Filed: November 5, 2011
    Publication date: June 14, 2012
    Inventor: David R. Whitcomb
  • Publication number: 20120148461
    Abstract: An improved process for the separation of different metal values from raw materials, and an apparatus for carrying out such processes are disclosed.
    Type: Application
    Filed: August 24, 2010
    Publication date: June 14, 2012
    Applicant: Metal Tech Ltd.
    Inventors: Aik Rosenberg, Boris Tarakanov, Sergey Gusakov, Igal Antonir, Alexander Rogov, Rami Noach, Ivgeny Jichor
  • Publication number: 20120148443
    Abstract: Nanomaterial preparation methods, compositions, and articles are disclosed and claimed. Such methods can provide nanomaterials with improved morphologies relative to previous methods. Such materials are useful in electronic applications.
    Type: Application
    Filed: November 7, 2011
    Publication date: June 14, 2012
    Inventor: David R. Whitcomb
  • Publication number: 20120132034
    Abstract: Process for producing a refined metal or metalloid, comprising: an electrolysis step of, in an electrolytic bath set in a container for an electrolysis in which a material comprising a metal element or metalloid element and impurities acts as an anode, and an alloy comprising the same metal element or metalloid element as the metal element or metalloid element and a medium metal that does not substantially form a solid solution with the metal element or metalloid element and having a complete solidification temperature lower than the melting point of the metal element or metalloid element acts as a cathode, performing electrolysis at a temperature at which the alloy can be a liquid phase; withdrawing a part or the whole of the alloy of the cathode to an outside of the container; cooling the withdrawn alloy at a temperature higher than the complete solidification temperature and lower than the electrolysis temperature; and a recovery step.
    Type: Application
    Filed: May 24, 2010
    Publication date: May 31, 2012
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Kunio Saegusa, Kazuya Koyama, Tetsuo Oishi
  • Publication number: 20120125153
    Abstract: The invention generally relates to the extraction of rare earth elements and heavy metals from geothermal fluids used in geothermal electrical production. The invention provides systems and methods for extracting these elements from hydrothermal products by the application of one or more forces that affect different components of a condensate differently.
    Type: Application
    Filed: January 27, 2012
    Publication date: May 24, 2012
    Applicant: SHALE AND SANDS OIL RECOVERY LLC
    Inventor: Thomas B. O'Brien
  • Publication number: 20120128529
    Abstract: Nanowire preparation methods, compositions, and articles are disclosed. Such nanowires may be thicker than other nanowires and may be useful in devices requiring high electrical current densities.
    Type: Application
    Filed: October 18, 2011
    Publication date: May 24, 2012
    Inventors: David R. Whitcomb, William D. Ramsden, Doreen C. Lynch
  • Publication number: 20120126181
    Abstract: Preparation methods, compositions, and articles useful for electronic and optical applications. Methods for reducing metal ions to metals in the presence of IUPAC Group 14 elements in their +2 oxidation state, the metal products, and articles comprising the metal products. Compositions comprising metal nanowires and ions of IUPAC Group 14 elements, the metal nanowires, and articles comprising the metal nanowires.
    Type: Application
    Filed: May 19, 2011
    Publication date: May 24, 2012
    Inventors: David R. Whitcomb, William D. Ramsden, Doreen C. Lynch
  • Publication number: 20120125157
    Abstract: A method and apparatus for producing direct reduced iron (DRI), also known as sponge iron, by means of direct contact of iron oxides with a stream of recycled and regenerated hot reducing gases containing hydrogen and carbon monoxide. The invention provides a way for decreasing the uncontained emission of CO2 to the atmosphere produced by combustion of carbon-bearing fuels in the reducing gas heater by substituting, at least partially, a gas stream mainly composed of hydrogen in lieu of the usual carbon-bearing fuels. The hydrogen fuel stream, depleted of CO2 by means of a physical gas separation unit (which can be a PSA/VPSA type adsorption unit, a gas separation membrane unit or combination of PSA/VPSA unit and a gas separation membrane unit) is derived from at least a portion of a stream of regenerated reducing gases being recycled to the reduction reactor.
    Type: Application
    Filed: July 21, 2010
    Publication date: May 24, 2012
    Applicants: Danieli & C. Officine Meccaniche, S.P.A, HYL Technologies, S.A. DE C.V.
    Inventors: Pablo Enrique Duarte-Escareño, Engenio Zendejas-Martinez, Andrea Tavano, Alessandro Martinis, Omar Della Gaspera
  • Publication number: 20120125659
    Abstract: Provided are a copper conductor film and manufacturing method thereof, and patterned copper conductor wiring, which have superior conductivity and wiring pattern formation, and with which there is no decrease in insulation between circuits, even at narrow wiring widths and narrow inter-wiring spacing.
    Type: Application
    Filed: December 17, 2008
    Publication date: May 24, 2012
    Inventors: Hideo Nakako, Kazunori Yamamoto, Yasushi Kumashiro, Youichi Machii, Shunya Yokozawa, Yoshinori Ejiri, Katsuyuki Masuda
  • Publication number: 20120103136
    Abstract: Provided is a movable hearth furnace for thoroughly removing alkali metal elements and producing high-strength reduced iron when producing reduced iron using iron production dust containing alkali metal elements in a movable hearth furnace. The movable hearth furnace comprises: a reduction zone for heating and reducing a carbon composite briquette (C) to produce a reduced briquette (D) having an iron metallization rate of 80% or greater; an alkali removal zone, disposed after the reduction zone, for heating the reduced briquette in a reducing atmosphere and removing the alkali metal elements from the reduced briquette to obtain an alkali-free reduced briquette; and a strengthening zone, disposed after the alkali removal zone, for heating the alkali-free reduced briquette in an oxidizing atmosphere and raising the crushing strength of the alkali-free reduced briquette to produce reduced iron product.
    Type: Application
    Filed: July 21, 2010
    Publication date: May 3, 2012
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Takeshi Sugiyama, Shohei Yoshida, Kyoichiro Fujita, Ryota Misawa
  • Publication number: 20120090433
    Abstract: An improved method for recovering refractory gold from a material comprising treating the material to at least partially remove nitric acid-insoluble lead moieties.
    Type: Application
    Filed: April 23, 2010
    Publication date: April 19, 2012
    Applicant: PRECIOUS METALS RECOVERY PTY LTD
    Inventor: Dean R. Butler
  • Publication number: 20120063948
    Abstract: Preparation methods, compositions, and articles are disclosed and claimed. Methods for reducing metal ions to metals, the metal products, and articles comprising the metal products are claimed. The claimed inventions are useful for electronic and optical applications.
    Type: Application
    Filed: August 8, 2011
    Publication date: March 15, 2012
    Inventors: William D. Ramsden, Doreen C. Lynch, Junping Zhang
  • Publication number: 20120061618
    Abstract: A carbonaceous bed in a reactor includes carbon bearing material that is not coke and rather includes natural wood blocks or bricks formed of non-coke carbonaceous material in a binder along with, as options, other constituents such as catalysts and fluxing agents. The bed reduces the amount of coke required in processes such as for syngas production. Such non-coke units are applicable to an original carbonaceous bed in a reactor and also to replenishment of reacted carbon in the original bed. The bed may include ungasified carbon particulate matter separated from gaseous reaction products of a gasification reactor, either in non-coke bricks or otherwise applied, as may other carbonaceous material often regarded as waste such as spent potliner material from aluminum making and soot residue from a gasification reactor. Certain reactor structural modifications can also result in reduced consumption of carbon in a bed.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 15, 2012
    Inventors: James Santoianni, Pieter VanNierop, Michael Erskine Heier, Aleksandr Gorodetsky, Stephanie Reese, Kent Olis Hicks
  • Publication number: 20120035382
    Abstract: The invention relates to a method for separating and partially returning transition metals and/or catalytically effective complex compounds thereof from a reaction mixture by combining one at least one-stage membrane separation and an adsorption, wherein a current comprising a catalyst, comprising a transition metal, is divided over at least one one-stage membrane separation step in a transition metal enriched retentate stream that resupplies the reaction mixture and a transition metal depleted permeate stream and the transition metal depleted permeate stream is further supplied to an adsorption step. The invention further relates to a method for producing tridecanals.
    Type: Application
    Filed: February 25, 2010
    Publication date: February 9, 2012
    Applicant: Evonik Oxeno GmbH
    Inventors: Markus Priske, Götz Baumgarten, Alfred Kaizik, Hans-Gerd Lüken
  • Publication number: 20120031236
    Abstract: “A method for producing direct reduced iron in a vertical reactor having an upper reducing zone and a lower cooling zone, the method including: feeding iron oxide feed material to an upper portion of the vertical reactor, the iron oxide feed material forming a burden flowing by gravity to a material outlet portion in a lower portion of the vertical reactor; feeding hot reducing gas to a lower portion of the reducing zone of the vertical reactor, the hot reducing gas flowing in a counter flow to the burden towards a gas outlet port in the upper portion of the vertical reactor; recovering direct reduced iron at the lower portion of the vertical reactor; recovering top gas at the upper portion of the vertical reactor; submitting at least a portion of the recovered top gas to a recycling process; and feeding the recycled top gas back into the vertical reactor, where the recycling process includes heating the recovered top gas in a preheating unit before feeding it to a reformer unit; feeding volatile carbon cont
    Type: Application
    Filed: April 6, 2010
    Publication date: February 9, 2012
    Applicant: PAUL WURTH S.A.
    Inventors: Jean-Luc Roth, David Rodriguez
  • Publication number: 20120011966
    Abstract: The present invention relates to the use of liquid-crystal displays (LCDs), and to processes for the recycling thereof. The processes according to the invention are characterised in that the LCDs are employed at least partly as replacement for other raw materials. In general, the LCDs are thermally treated here at a temperature in the range from 900 to 1700° C.
    Type: Application
    Filed: September 22, 2011
    Publication date: January 19, 2012
    Inventor: Roland MARTIN
  • Publication number: 20120010450
    Abstract: A system and method of converting tires or other solid carbon based material is disclosed, wherein the system and method includes providing a chamber, feeding tires or other solid carbon based material or both into the chamber, rotating the chamber and heating and reducing the material in the chamber, collecting solid residue from the chamber, collecting vapor from the chamber, and converting vapor collected from the chamber to a liquid. The chamber has an interior surface and can include one or more ribs on the interior surface for rotating and tumbling the material in the chamber while heating the material.
    Type: Application
    Filed: July 8, 2011
    Publication date: January 12, 2012
    Inventor: Fredrick Taylor
  • Publication number: 20120006158
    Abstract: Offgas containing carbon dioxide and carbon monoxide that is produced in the reduction of ores and other metal oxides in a reactor is treated to reduce its carbon dioxide content and is then contacted with metal oxide to reduce the oxidation state of the metal and oxidize carbon monoxide therein to carbon dioxide, following which the reduced metal is oxidized with steam to produce hydrogen that can be fed to the reactor.
    Type: Application
    Filed: September 22, 2011
    Publication date: January 12, 2012
    Inventors: Raymond Francis Drnevich, Joseph Michael Schwartz, Minish Mahendra Shah, Dante Patrick Bonaquist