End Effector Patents (Class 901/30)
  • Publication number: 20080206020
    Abstract: A substrate processing apparatus is described. The apparatus includes a substrate load lock chamber. A plurality of storage bays may be used to store flat-panel display substrates. A first set of one or more multi-axis robot arms may transfer one or more flat-panel display substrates between the substrate load lock chamber and the plurality of storage bays. A substrate transfer chamber is vacuum coupled to the substrate load lock chamber. A plurality of process chamber modules are vacuum coupled to the substrate transfer chamber. A second set of one or more multi-axis robot arms may transfer flat-panel display substrates between the storage bays and the plurality of process chamber modules under sub-atmospheric conditions.
    Type: Application
    Filed: February 27, 2007
    Publication date: August 28, 2008
    Inventors: John M. Smith, James Carter Hall, Jeffrey G. Ellison
  • Publication number: 20080201015
    Abstract: A method for calibration of an industrial robot including a plurality of movable links and a plurality of actuators effecting movement of the links and thereby of the robot. The method includes mounting a measuring tip on or in the vicinity of the robot, moving the robot such that the measuring tip is in contact with a plurality of measuring points on the surface of at least one geometrical structure on or in the vicinity of the robot, reading and storing the positions of the actuators for each measuring point, and estimating a plurality of kinematic parameters for the robot based on a geometrical model of the geometrical structure, a kinematic model of the robot, and the stored positions of the actuators for the measuring points.
    Type: Application
    Filed: February 21, 2006
    Publication date: August 21, 2008
    Inventor: Torgny Brogardh
  • Publication number: 20080195253
    Abstract: A robot according to the present invention cleans the outer surface of a window/wall by performing automatic movement along the outer surface of the window/wall while being vacuum-sucked onto the outer surface. The robot includes a moving unit for moving the robot in a first direction, a direction changing unit for rotating the moving unit to change a movement direction of the robot, and a cleaning unit mounted on at least one side of the robot. The robot can prevent water used to clean the window or outer wall of a building from being dropped toward a lower story. Also, the robot can run smoothly so that it can achieve a satisfactory cleaning operation without forming spots. The robot uses a turntable system, so that it can also freely change the movement direction thereof about the center thereof up to 360° without requiring any radius of rotation, to easily approach even a dead zone.
    Type: Application
    Filed: February 4, 2008
    Publication date: August 14, 2008
    Inventor: Yong Wook KIM
  • Publication number: 20080183349
    Abstract: A method for communication between a charging station and a robot, via a pair of power lines coupled between a power supply in the charging station and a battery in the robot. In operation, the power supply is sequentially switched between a first voltage level and a second voltage level in accordance with a predetermined signal pattern. The voltage level on the power lines in the robot is monitored and correlated with a specific command to be executed by the robot.
    Type: Application
    Filed: December 4, 2007
    Publication date: July 31, 2008
    Applicant: F ROBOTICS ACQUISITIONS LTD.
    Inventors: Shai Abramson, Ido Ikar
  • Publication number: 20080181753
    Abstract: Individual items or multiple items are stored on vertical stacks (or racks) of conveyors. The stacks of conveyors are located on both sides of a vertical transport on which cartons, totes, and/or pallets are loaded. The vertical transport is able to be vertically lifted in a fashion similar to an elevator so that the totes on the conveyor can receive items from the various levels of the storage rack conveyors. To speed up the loading process, items can be loaded in the containers simultaneously from both sides of the container and/or sequentially. In one form, a cross-belt conveyor is used to load the items. Alternatively or additionally, robotic arms can be used to load the items. One or more conveyor drivers can be used to power multiple conveyors in order to index items to a loading position on the conveyors.
    Type: Application
    Filed: January 25, 2007
    Publication date: July 31, 2008
    Inventors: William A. Bastian, Elizabeth Sobota
  • Publication number: 20080170929
    Abstract: A robotic end effector or blade suitable for transferring a substrate in a processing system is provided. In some embodiments, an end effector can include a body having opposing mounting and distal end, the body fabricated from a single mass of ceramic. The body can include a pair of arcuate lips extending upward from an upper surface of the body. Each lip is disposed on a respective finger disposed at the distal end of the body. An arcuate inner wall extends upward from the upper surface at the mounting end of the body. The inner wall and lips define a substrate receiving pocket. A plurality of contact pads extend upward from the upper surface of the body for supporting the substrate thereon. A recess is formed in a bottom surface of the body to accommodate a mounting clamp.
    Type: Application
    Filed: January 2, 2008
    Publication date: July 17, 2008
    Inventor: Eric Ng
  • Patent number: 7395136
    Abstract: A robot device includes a sensor on its base plate capable of sensing rotation of the base plate occasioned by decoupling of a detachable joint that joins a forearm member of the robot to the base plate. The sensor produces an output signal which, if above a preset threshold, shuts off the motors driving the robot.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: July 1, 2008
    Assignee: SIG Doboy Inc.
    Inventor: Gabriel F. Osten
  • Publication number: 20080140258
    Abstract: First of all, in a first step S1, each actuator command value for position command value and posture command value of an end-effector is determined. Next, in a second step S2, rotational resistance values of a first and a second universal joints are obtained, and in a third step S3, the force and the moment exerted to each of the second universal joints are computed using this, and in a fourth step S4, the resultant force and the resultant moment exerted to the end-effector are determined from these. Then, in the fifth step, the elastic deformation amount of a mechanism is computed using these, and a compensation amount of the actuator command value is computed using these values. And then, in the sixth step, the actuator command values determined in the first step are updated with the compensation amount determined in the fifth step taken into account.
    Type: Application
    Filed: September 24, 2007
    Publication date: June 12, 2008
    Applicant: Okuma Corporation
    Inventors: Hiroshi UENO, Tetsuya Matsushita
  • Publication number: 20080138185
    Abstract: A system for feeding a fuel cell stack including fuel cells having separating plates and membrane electrode assemblies (MEAs). The system includes a separating plate supply unit for feeding the separating plates; an MEA supply unit for feeding the MEAs; a feeding unit on which the separating plates and the MEAs are fed, the feeding unit being configured to move upward and downward; and a transfer unit for receiving the separating plates and the MEAs from the separating plate supply unit and the MEA supply unit, respectively, and for loading the separating plates and the MEAs onto the feeding unit. A method for feeding a fuel cell stack includes feeding one of the separating plates, moving a magazine a predetermined amount, lowering a plate of a feeding unit, feeding one of the MEAs, and determining if the separating plates and the MEAs have been fed as much as a required number.
    Type: Application
    Filed: July 23, 2007
    Publication date: June 12, 2008
    Inventor: Jong Ho Maing
  • Publication number: 20080140257
    Abstract: A robot control apparatus for controlling force exerted between a working tool mounted at the forward end of a robot arm and a workpiece is disclosed. The apparatus includes a force measuring unit for acquiring the force data required for the control operation, a calculating unit for calculating the force exerted by gravity on the force measuring unit and the dynamic terms generated by the motion of the robot arm, of all the forces exerted on the force measuring unit from the working tool, a compensation unit for compensating the force measured by the force measuring unit using the force exerted by gravity and the dynamic terms calculated by the calculating unit, and a command adjusting unit for adjusting the operation command for the robot arm in accordance with the force exerted on the force measuring unit by the dynamic terms and gravity in the case where each of the dynamic terms is larger than a predetermined threshold value.
    Type: Application
    Filed: December 6, 2007
    Publication date: June 12, 2008
    Applicant: FANUC LTD
    Inventors: Takashi SATO, Takahiro IWATAKE
  • Publication number: 20080133056
    Abstract: The present invention provides a robot system which can move a robot hand with ease and enable fine adjustment, as well as can prevent collision of the hand with surrounding structures. In this invention, a robot system 10 includes a robot body 11 and a control section 20 for controlling the robot body 11. The robot body 11 includes a first hand 12, a J1 axis along which the first hand 12 is driven in a direction defined from a proximal end 12a of the first hand 12 to its distal end 12b, a J4 axis about which the J1 axis is rotated in a horizontal plane, a J3 axis along which the J4 axis is shifted in the vertical direction, and a J5 axis along which the J3 axis is shifted in a direction in a horizontal plane. The J1 axis, J3 axis, J4 axis and J5 axis are synchronously driven by the control section 20, whereby the first hand 12 can be moved on the X axis, Y axis and C axis in a tool coordinate system, on the basis of the center of the first hand 12.
    Type: Application
    Filed: October 16, 2007
    Publication date: June 5, 2008
    Applicant: TOSHIBA KIKAI KABUSHIKI KAISHA
    Inventor: Yasunori Nishihara
  • Publication number: 20080131237
    Abstract: Modular wafer transport and handling facilities are combined in a variety of ways deliver greater levels of flexibility, utility, efficiency, and functionality in a vacuum semiconductor processing system. Various processing and other modules may be interconnected with tunnel-and-cart transportation systems to extend the distance and versatility of the vacuum environment. Other improvements such as bypass thermal adjusters, buffering aligners, batch processing, multifunction modules, low particle vents, cluster processing cells, and the like are incorporated to expand functionality and improve processing efficiency.
    Type: Application
    Filed: February 14, 2008
    Publication date: June 5, 2008
    Inventor: Peter van der Meulen
  • Patent number: 7379790
    Abstract: Robotic devices, systems, and methods for use in robotic surgery and other robotic applications, and/or medical instrument devices, systems, and methods includes both a reusable processor and a limited-use robotic tool or medical treatment probe. A memory the limited-use component includes machine readable code with data and/or programming instructions to be implemented by the processor. Programming of the processor can be updated by shipping of new data once downloaded by the processor from a component, subsequent components can take advantage of the updated processor without repeated downloading.
    Type: Grant
    Filed: May 4, 2004
    Date of Patent: May 27, 2008
    Assignee: Intuitive Surgical, Inc.
    Inventors: Gregory K. Toth, Nitish Swarup, Tom Nixon, David Q. Larkin, Steven J. Colton
  • Publication number: 20080118338
    Abstract: A transfer robot (100) for transferring a silicon wafer includes a base support (110), an end-effector (130) having a main body (131) and two spaced fingers (132) extending from the main body, an articulated arm (120) assembly interconnecting the base support and the end-effector, a pair of first linear optical sensors (1331, 1332) arranged on the respective fingers of the end-effector, a second linear optical sensor (1333) arranged on the main body of the end-effector, and a plurality of displacement sensors (134) arranged non-collinearly on the end-effector, for ascertaining a vertical position and a leveling of the silicon wafer. The first and second linear optical sensors are arranged non-collinearly on the end-effector for ascertaining a center of the silicon wafer.
    Type: Application
    Filed: August 27, 2007
    Publication date: May 22, 2008
    Applicant: FOXSEMICON INTEGRATED TECHNOLOGY, INC.
    Inventors: HUNG-KAI HUANG, KAI-JEN CHENG
  • Publication number: 20080105481
    Abstract: An apparatus and a method for robotic control that allows an unbalanced pendulum robot to raise its Center of Mass and balance on two motorized wheels. The robot includes a pair of arms that are connected to the upper body of the robot through motorized joints. The method consists of a series of movements employing the arms of the robot to raise the robot to the upright position. The method comprises a control loop in which the motorized drives are included for dynamic balance of the robot and the control of the arm apparatus. The robot is first configured as a low Center of Mass four-wheeled vehicle, then its Center of Mass is raised using a combination of its wheels and the joint located at the attachment point of the arm apparatus and the robot body, between the rear and front wheels; the method then applies accelerations to the rear wheels to dynamically pivot and further raise the Center of Mass up and over the main drive wheels bringing the robot into a balancing pendulum configuration.
    Type: Application
    Filed: November 2, 2006
    Publication date: May 8, 2008
    Inventors: Timothy L. Hutcheson, Jerry E. Pratt
  • Publication number: 20080109014
    Abstract: A robotic surgical device for using in laparoscopic surgery, including two robotic arms, each having at least six joints providing a total of fourteen degrees of movement that accurately reproduce the movements of a human torso complete with arms.
    Type: Application
    Filed: November 6, 2006
    Publication date: May 8, 2008
    Inventor: Alejandro Ramos de la Pena
  • Patent number: 7339339
    Abstract: An object of the invention is to provide a floating mobile object control system capable of causing a floating mobile object to stand still in a predetermined position with high precision or track a target trajectory with high precision, even under disturbances caused by waves, tidal current, etc.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: March 4, 2008
    Assignee: The Ritsumeikan Trust
    Inventor: Katsuya Kanaoka
  • Patent number: 7331104
    Abstract: A device for the assembly of at least two standard elements of a precision mechanical structure by a linking element, where the first standard element includes a reference surface, while the second standard element includes a bearing surface which has to be positioned with precision in an orthonormal coordinate system associated with the aforementioned reference surface, given that the connection between the linking element and at least one of the standard elements includes two contact faces provided on the linking element and the standard element. A clamp composed of two half collars, and presenting shapes which interlock with the corresponding shapes of the linking element and of the standard element in such a way that the clamping of the two half collars causes the application and the centering of the two aforementioned contact faces against each other.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: February 19, 2008
    Inventors: Philippe Carasso, Bruno Leneveu, Laurent Norjoux, Philippe Rocton
  • Publication number: 20080039973
    Abstract: First of all, in a first step S1, each actuator command value for position command value and posture command value of an end-effector is determined. Next, in a second step S2, rotational resistance values of a first and a second universal joints are obtained, and in a third step S3, the force and the moment exerted to each of the second universal joints are computed using this, and in a fourth step S4, the resultant force and the resultant moment exerted to the end-effector are determined from these. Then, in the fifth step, the elastic deformation amount of a mechanism is computed using these, and a compensation amount of the actuator command value is computed using these values. And then, in the sixth step, the actuator command values determined in the first step are updated with the compensation amount determined in the fifth step taken into account.
    Type: Application
    Filed: July 18, 2007
    Publication date: February 14, 2008
    Applicant: Okuma Corporation
    Inventors: Hiroshi UENO, Tetsuya MATSUSHITA
  • Publication number: 20080020272
    Abstract: A device of the present invention is used for forming a layered battery cell having at least first electrode and at least one second electrode of charge opposite from said first electrode and a separator layer positioned between the first and second electrodes and at least one of a first current collector connected to at least one of the first and second electrodes and at least one of a second current collector connected to at least one of the first and second electrodes. At least one support member is integrated with an assembly line. A plurality of pins extend from the support member for receiving the first and second electrodes and the first and second current collectors layered with one another to assemble the same into a unitary package.
    Type: Application
    Filed: July 24, 2007
    Publication date: January 24, 2008
    Inventor: Paul Leslie Kemper
  • Patent number: 7321215
    Abstract: A wireless 3D auto-offset system for robot arms is provided. The wireless 3D auto-offset monitor sensor of the system includes an electronic leveling sensor, a Z-axis optical scale, and an XY-axes CCD monitor sensor for monitor and judgment of level states, offsets, and gaps, respectively.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: January 22, 2008
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Sheng-Hua Yang, Chia-Feng Liang
  • Patent number: 7287951
    Abstract: A device for aligning a plurality of vertically arranged (upright) disks (20), especially wafer disks during the fabrication of semiconductor chips. Two mounting or bearing elements (30, 32) respectively have individually mounted guide rollers (34) positioned next to each other for each disk position. A drive device (40, 42; 50, 60; 240, 242) is for rotating the disks in relation to their azimuthal positions. A device (80) is provided for detecting the azimuthal positions of notches or indentations (22) arranged in the outer circumference in the disks (20). A device is provided for controlling the drive with the signals of the detection device (80) for detecting the azimuthal positions of the notches (22). The drive for rotating the disks in relation to their azimuthal positions has an individually driven drive roller element (42) for each disk (20) mounted on the stationary axis.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: October 30, 2007
    Assignee: Tec-Sem AG
    Inventor: Jakob Blattner
  • Patent number: 7278817
    Abstract: An apparatus and method of transferring and loading a reticle onto a receiving station (for example, a reticle exposure stage). The reticle is first retrieved from a storage facility with an end effector having a reticle plate coupled to a mounting plate. The mounting plate connects the end effector to a robotic arm. The reticle is aligned in an out-of-plane position in an off-line alignment station. The alignment is in compliance with the alignment requirement at the receiving station. The reticle is mounted onto the reticle plate after undergoing the alignment at the off-line alignment station. The reticle is then transferred from the off-line alignment station to the receiving station while maintaining the previous alignment at the off-line alignment station. The apparatus further provides rigidity of the mounted reticle to ensure compliance with the alignment requirement at the receiving station.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: October 9, 2007
    Assignee: ASML Holding N.V.
    Inventors: Glenn M. Friedman, Peter Kochersperger, Joseph Laganza
  • Patent number: 7239940
    Abstract: A medical system that allows a medical device to be controlled by one of two input devices. The input devices may be consoles that contain handles and a screen. The medical devices may include robotic arms and instruments used to perform a medical procedure. The system may include an arbitrator that determines which console has priority to control one or more of the robotic arms/instruments.
    Type: Grant
    Filed: January 6, 2005
    Date of Patent: July 3, 2007
    Assignee: Intuitive Surgical, Inc
    Inventors: Yulun Wang, Modjtaba Ghodoussi, Darrin Uecker, James Wright, Amante Mangaser
  • Patent number: 7235806
    Abstract: An apparatus for detecting the presence of a substrate that is carried by an end effector of a substrate handling assembly positioned within a substrate processing system comprises a receiving member that is coupled to an end effector and a light sensor that is operatively coupled to the receiving member and is configured to detect an amount light transmitted by the receiving member. In a modified embodiment, the apparatus also includes a transmitting member that receives light from a light source and is also coupled to the end effector.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: June 26, 2007
    Assignee: ASM America, Inc.
    Inventors: David A. Beginski, Richard Crabb, James Donald
  • Patent number: 7211978
    Abstract: A system for performing the method of this invention includes a leader having a robot arm able to articulate about first axes and supporting an end effector. A follower includes a robot arm able to articulate about respective second axes. Servo motors articulate the leader arm about the first axes and the follower arm about the second axes. A user interface allows a user to jog the arm of the leader and to program movement of the arms for automatic execution such that the end effector reaches predetermined positions. A controller, operatively connected to the servo motors and the user interface, controls operation of the servo motors, moves the arm of the leader in accordance with the programmed movement, and moves the arm of the follower such that it tracks or mirrors movement of the leader.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: May 1, 2007
    Assignee: Fanuc Robotics America, Inc.
    Inventors: Tien L. Chang, H. Dean McGee, Eric Wong, Sai-Kai Cheng, Jason Tsai
  • Patent number: 7179346
    Abstract: An apparatus is provided for transferring components from a pick-up position amongst a supply of components to a placement position on a receptor, such as a die pad, during semiconductor processing. It includes a first delivery device and a second delivery device operative to alternatively transfer the components from the pick-up position to the placement position. The second delivery device is arranged opposite the first delivery device about a line passing through the pick-up position and the placement position.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: February 20, 2007
    Assignee: ASM Assembly Automation Ltd.
    Inventors: Kui Kam Lam, Man Chung Raymond Ng, Yen Hsi Terry Tang
  • Patent number: 7153085
    Abstract: A multi-modal package handling tool and system uses a robot carrying an end of arm tool incorporating several package handling devices such as vacuum carrying units, extensible package grippers, and a slideably deployable package platform. Each these package handling devices may be used singly, or in combination with each other.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: December 26, 2006
    Assignee: Aidco International, Inc.
    Inventors: Jeffrey A Clark, William A Frank, Salahuddin F Khan
  • Patent number: 7148646
    Abstract: A method for controlling a parallel kinematic mechanism machine and control device therefor, which includes the steps of (1) obtaining each actuator command based on kinematic parameters; (2) calculating loads exerted by the weight of each component of a machine; (3) obtaining loads in the direction of axis of each actuator; (4) decomposing loads in the direction of axis of each strut into directions of axes of the first and second universal joints; (5) obtaining the amounts of elastic deformation of each element; (6) converting approximately the amounts of elastic deformation of each universal joint to displacement in the direction of axis of each actuator; (7) subtracting displacement in the direction of axis of each actuator obtained at steps (5) and (6) from each actuator command to renew each actuator command, and controlling the machine according to each renewed actuator command.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: December 12, 2006
    Assignee: Okuma Corporation
    Inventor: Tetsuya Matsushita
  • Patent number: 7118370
    Abstract: A machine and a method for forming composite materials are provided. The machine includes a frame and at least one forming beam attached to the frame, the at least one beam being arranged to align with a mandrel. The forming beam is pivotally segmented into at least two segments to conform to the shape of the mandrel, or alternately is bendable to conform to the shape of the mandrel. The mandrel is receivable within the frame in alignment with the forming beam. An apparatus is also provided to position a composite charge over the mandrel, and to position the mandrel within the frame. A further apparatus is provided to transport the mandrel, and to urge the mandrel toward the forming beam, forming a composite charge.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: October 10, 2006
    Assignee: The Boeing Company
    Inventors: Kurtis S. Willden, Raymond N. Henderson, Gary E. Pfitzner, Surendra R. Parekh, Christopher G. Harris
  • Patent number: 7114243
    Abstract: A robotic tool picks and places a clinging part in an assembly. Two gripper jaws each have gripper fingers spaced apart from each other by a central spacing. The gripper jaws are movable between a grip position and a release position. The robotic tool also has an ejector. The ejector has a part pusher that is cling resistant and movable in the central spacings between a retracted position, and an eject position in which the cling resistant part pusher ejects the clinging part.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: October 3, 2006
    Assignee: Seagate Technology LLC
    Inventors: Sham S. Nayar, James J. Stirn, Terrence L. Grewe
  • Patent number: 7074179
    Abstract: A robotic system that moves a surgical instrument in response to the actuation of a foot pedal that can be operated by the foot of a surgeon. The robotic system has an end effector that is adapted to hold a surgical instrument such as an endoscope. The end effector is coupled to a robotic arm assembly which can move the endoscope relative to the patient. The system includes a computer which controls the movement of the robotic arm in response to input signals received from the foot pedal.
    Type: Grant
    Filed: September 10, 2002
    Date of Patent: July 11, 2006
    Assignee: Intuitive Surgical Inc
    Inventors: Yulun Wang, Darrin R. Uecker, Keith Phillip Laby, Jeff Wilson, Steve Jordan, James Wright
  • Patent number: 7054715
    Abstract: System and method for allowing execution of control over robot hardware other than specific robot hardware by using control software that does not have features to be applied to the robot hardware other than the specific hardware designed for control. Control software makes an inquiry about the presence of robot function requested by control software through the use of interface recording and robot function searching. If it has been found that the robot function is present, there is a requests that robot motion be performed. If it has been found that the robot function is not present, the request is skipped, or the request is made to similar robot function.
    Type: Grant
    Filed: April 10, 2003
    Date of Patent: May 30, 2006
    Assignee: NEC Corporation
    Inventor: Yosuke Takano
  • Patent number: 7048316
    Abstract: This invention provides a method and a support device for a wafer transfer process which has a first vertical, second horizontal and third compound angled surfaces, as well as a pair of sidewalls all contiguously connected to one another. The third surface has at least two angled receiving surfaces whereby one of such angled receiving surfaces has a small angle of incline for initially receiving and delivering a wafer. The other angled receiving surface has a steep angle of incline for effectively receiving, holding and transporting a semiconductor wafer by increasing an effective coefficient of friction of the wafer to provide a secure resting point for such wafer during a transfer process while simultaneously increasing the speed thereof. Furthermore, a hole may be provided in the support device for attaching the support device, or a plurality of support devices having holes, to an end-effector.
    Type: Grant
    Filed: July 12, 2002
    Date of Patent: May 23, 2006
    Assignee: Novellus Systems, Inc.
    Inventors: Richard Blank, Simon Chan, Edmund Minshall, Peter Woytowitz
  • Patent number: 7021173
    Abstract: A remote center of motion robotic system including a base unit and a plurality of linking units. The base unit is rotatable about a first axis. The plurality of linking units are coupled with one another. At least two of the linking units are kept parallel to each another during motion. The plurality of linking units are coupled with that base unit at a first end. The plurality of linking units are rotatable about a second axis by changing an angle between each of the plurality of links.
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: April 4, 2006
    Assignee: The John Hopkins University
    Inventors: Dan Stoianovici, Louis L. Whitcomb, Dumitru Mazilu, Russell H. Taylor, Louis R. Kavoussi
  • Patent number: 7016748
    Abstract: The present invention is directed to a system and method for providing a collaborative integration of hybrid electronic and micro and sub-micro, including nano, level aggregates. A method of sampling aggregate nano behavior to determine progress by the nano aggregate toward a desired result may include sampling at least one of aggregate nano and aggregate micro behavior by a transducer. The aggregate behavior is measured through use of the sample by a macro level control apparatus. If the measured aggregate behavior is identified as diverging from progress toward a desired result, an effector is activated by the macro level control apparatus to influence the aggregate behavior toward progress toward the desired result.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: March 21, 2006
    Assignee: LSI Logic Corporation
    Inventor: Christopher L. Hamlin
  • Patent number: 7006895
    Abstract: A teleoperator system with telepresence is shown which includes right and left hand controllers (72R and 72L) for control of right and left manipulators (24R and 24L) through use of a servomechanism that includes computer (42). Cameras (46R and 46L) view workspace (30) from different angles for production of stereoscopic signal outputs at lines (48R and 48L). In response to the camera outputs a 3-dimensional top-to-bottom inverted image (30I) is produced which, is reflected by mirror (66) toward the eyes of operator (18). A virtual image (30V) is produced adjacent control arms (76R and 76L) which is viewed by operator (18) looking in the direction of the control arms. By locating the workspace image (30V) adjacent the control arms (76R and 76L) the operator is provided with a sense that end effectors (40R and 40L) carried by manipulator arms (34R and 34L) and control arms (76R and 76L) are substantially integral.
    Type: Grant
    Filed: October 26, 2004
    Date of Patent: February 28, 2006
    Assignee: SRI International
    Inventor: Philip S. Green
  • Patent number: 7004715
    Abstract: An apparatus and method of transferring and loading a reticle onto a receiving station (for example, a reticle exposure stage). The reticle is first retrieved from a storage facility with an end effector having an reticle plate coupled to a mounting plate. The mounting plate connects the end effector to a robotic arm. The reticle is aligned in an out-of-plane position in an off-line alignment station. The alignment is in compliance with the alignment requirement at the receiving station. The reticle is mounted onto the reticle plate after undergoing the alignment at the off-line alignment station. The reticle is then transferred from the off-line alignment station to the receiving station while maintaining the previous alignment at the off-line alignment station. The apparatus further provides rigidity of the mounted reticle to ensure compliance with the alignment requirement at the receiving station.
    Type: Grant
    Filed: January 9, 2002
    Date of Patent: February 28, 2006
    Assignee: ASML Holding N.V.
    Inventors: Glenn M. Friedman, Peter Kochersperger, Joseph Laganza
  • Patent number: 7004524
    Abstract: A handling device includes a gripping member and a support structure that supports the gripping member. The gripping member includes a flexible, substantially toroidal wall member having an outer wall portion and an inner wall portion that defines an axial passageway through the gripping member. A fluid fills the volume enclosed by the wall member. The support structure includes a drive mechanism that engages the wall member and is constructed and arranged to provide relative axial movement between the inner and outer wall portions.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: February 28, 2006
    Assignee: RHBB (IB) Limited
    Inventor: Adrian Richard Marshall
  • Patent number: 6999852
    Abstract: A teleoperator system with telepresence is shown which includes right and left hand controllers (72R and 72L) for control of right and left manipulators (24R and 24L) through use of a servomechanism that includes computer (42). Cameras (46R and 46L) view workspace (30) from different angles for production of stereoscopic signal outputs at lines (48R and 48L). In response to the camera outputs a 3-dimensional top-to-bottom inverted image (30I ) is produced which, is reflected by mirror (66) toward the eyes of operator (18). A virtual image (30V) is produced adjacent control arms (76R and 76L) which is viewed by operator (18) looking in the direction of the control arms. By locating the workspace image (30V) adjacent the control arms (76R and 76L) the operator is provided with a sense that end effectors (40R and 40L) carried by manipulator arms (34R and 34L) and control arms (76R and 76L) are substantially integral.
    Type: Grant
    Filed: October 26, 2004
    Date of Patent: February 14, 2006
    Assignee: SRI International
    Inventor: Philip S. Green
  • Patent number: 6996456
    Abstract: Methods and apparatuses for calibrating and teaching a robot to accurately work within a work environment. The present invention preferably provides one or more tactile sensor devices that may be operatively coupled with a robot or positioned at one or more desired locations within a work environment of the robot. In one aspect of the present invention a method comprises the steps of providing a touch sensitive surface in the work environment, causing the touch sensitive surface to contact an object, generating a signal indicative of the position of the contact with respect to the touch sensitive surface, and using information comprising the generated signal to teach the robot the location of the contact in the work environment.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: February 7, 2006
    Assignee: FSI International, Inc.
    Inventors: Andrew W. Cordell, Keith W. Redding
  • Patent number: 6994387
    Abstract: A device for gripping, holding, releasing, and conveying objects of varying sizes and shapes, comprising an elongated torus (120) enclosing a fluid material (121), an outer roller assembly (136), and an inner roller assembly (134). Torus (120) may be made of a flexible membrane and able to seal in fluid material (121). Fluid material (121) can be a gas, liquid, solid particles, semisolid particles, or mixtures of these. Central channel (128) of torus (120) is collapsed due to pressure of fluid material (121) within torus (120). Gripping and conveying action is achieved by rolling motion of roller assemblies (134) and (136) which move collapsed channel (128) along the longitudinal (elongated) axis of torus (120). This causes front portion of the torus to slide radially inward to grip objects. Further movement of the roller assemblies can cause the object to be pulled completely inside the collapsed channel (121) and conveyed to the rear portion of the collapsed channel and out of torus (120).
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: February 7, 2006
    Inventors: Gary Dean Ragner, William Ross Kinney
  • Patent number: 6994703
    Abstract: A system for performing minimally invasive cardiac procedures. The system includes a pair of surgical instruments that are coupled to a pair of robotic arms. The instruments have end effectors that can be manipulated to hold and suture tissue. The robotic arms are coupled to a pair of master handles by a controller. The handles can be moved by the surgeon to produce a corresponding movement of the end effectors. The movement of the handles is scaled so that the end effectors have a corresponding movement that is different, typically smaller, than the movement performed by the hands of the surgeon. The scale factor is adjustable so that the surgeon can control the resolution of the end effector movement. The scale factor of the end effector can be set to zero to prevent movement of the end effector. An input button may also be provided so that the end effector only moves when the input button is depressed by the surgeon.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: February 7, 2006
    Assignee: Intuitive Surgical
    Inventors: Yulun Wang, Darrin R. Uecker, Keith Phillip Laby, Jeff Wilson, Steve Jordan, James Wright
  • Patent number: 6993413
    Abstract: A manipulator operative in a master/slave operative mode, comprising: a master unit commanding an operation; a slave unit having a work unit; a detector detecting the orientation of the master unit and the orientation of the slave unit; and a control device controlling the slave unit in response to the command from the master unit, wherein the control device includes: a function of determining a non-mater/slave operative mode or a master/slave operative mode; a function of calculating a difference between the orientation of the master unit and the orientationof the slave unit; and a function of comparing the absolute value of the difference with a preset reference value; and depending upon the result of the comparison, determining a normal master/slave operative mode or a transitional master/slave operative mode, in the master/slave operative mode, the transitional master/slave operative mode is a transitional mode from the non-master/slave operative mode to the master/slave operative mode.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: January 31, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takamitsu Sunaoshi
  • Patent number: 6980881
    Abstract: Large machines, especially those having working envelopes in excess of fifteen feet, exhibit unacceptable errors because of thermal expansion and mechanical misalignments between the axes. The errors have traditionally been minimized by enclosing the machine in a thermal enclosure, by careful calibration, or by mounting a laser interferometer on each axis. These solutions are costly, may require frequent recalibration, and do not correct for small rotations of one axis relative to another axis due to wear etc. The present invention uses an interferometric laser tracker or a comparable 3D position sensor to measure the position of a retroreflector attached to the end effector, e.g. a machine head when the machine comes to rest. A computer compares the measured position to the desired position according to the machine media, and adds the appropriate correction with trickle feed media statements to move the machine to the correct position prior to further machining.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: December 27, 2005
    Assignee: The Boeing Company
    Inventors: Thomas A. Greenwood, Thomas W. Pastusak
  • Patent number: 6941192
    Abstract: A robot having a spindle is calibrated by disposing a calibration tool in the robot spindle. The position of the calibration tool is measured. An axis of the spindle is determined based on the measured position. A calibration tool center point is determined based on the measured position. A robot tool rotation axis is determined based on the determined spindle axis, robot tool center point, the determined calibration tool center point, and difference in length between the calibration tool and a robot tool.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: September 6, 2005
    Assignee: ABB Research Ltd.
    Inventors: Qing Tang, Hakan Brantmark, Zhongxue Gan, Torgny Brogardh
  • Patent number: 6933695
    Abstract: The present invention generally relates to surgical devices, systems, and methods, especially for minimally invasive surgery, and more particularly provides structures and techniques for aligning a robotic surgery system with a desired surgical site. The present invention describes techniques for mounting, configuring and arranging set-up arms for the surgical manipulators and endoscope drive mechanisms of a telesurgical system within an operating theater. The various aspects of the invention improve and optimize space utilization in the conduct of a surgical procedure, especially in the telesurgical systems which provide for concurrent operation by two surgeons using multiple robotic arm assemblies. In one aspect, the invention includes a method and apparatus for ceiling-height mounting of surgical set-up arms, and in another aspect, the invention includes a method and apparatus for the mounting of surgical setup arms to the table pedestal or floor below an operating table.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: August 23, 2005
    Assignee: Intuitive Surgical
    Inventor: Stephen J. Blumenkranz
  • Patent number: 6907767
    Abstract: A dropping test apparatus for a mobile communication terminal is provided. The test apparatus comprises: a main body; a first group of fixed members attached to a first group of inclined surfaces formed on the main body for providing one or more distinct dropping orientations for a folder type mobile communication terminal in an open position; a second group of fixed members attached to a second group of inclined surfaces formed on the main body for providing one or more distinct dropping orientations for a folder type mobile communication terminal in a closed position.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: June 21, 2005
    Assignee: LG Electronics Inc.
    Inventor: Yong Ho Seung
  • Patent number: 6877203
    Abstract: A method for regulating a device used for fixing aircraft airframe pieces in connection with assembly of airframe parts, where the device consists of a rig comprising a matrix of rails that can slide in such a way that a number of fixing elements attached to the rails can be positioned freely along three co-ordinates x, y, z in space within a given volume, where a manipulator grasps a fixing element after which the fixing element is moved by the manipulator to the given co-ordinate, and where the rails on which a fixing element is arranged is locked in relation to the rig by an automatic locking function initiated by the manipulator, thereby fixing the fixing element's position in space and the setting procedure is repeated for a predetermined number of fixing elements on the rig.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: April 12, 2005
    Assignee: Saab AB
    Inventors: Magnus Engström, Mats Karlsson, Roland Kvist
  • Publication number: 20040267254
    Abstract: Improved robotic surgery end-effectors include at least one insulation material for inhibiting surface conduction of electrical current in a proximal direction, from a distal active electrode toward the proximal end of the end-effector and toward the rest of the surgical instrument itself. Some embodiments include two layers of insulation to further prevent proximally-directed current. By inhibiting proximal current flow, the end-effectors prevent unwanted patient burns as well as electricity-related wear and tear in and around the area where the end-effector is coupled with the rest of the surgical instrument. In various embodiments, such end-effectors are preferably removably coupleable with a robotic surgical instrument.
    Type: Application
    Filed: June 30, 2003
    Publication date: December 30, 2004
    Applicant: INTUITIVE SURGICAL, INC., a Delaware corporation
    Inventors: Scott Manzo, Joseph P. Orban, Andris Ramans, Matt Williams