Inorganic Gas Or Liquid Particle Sorbed (e.g., Vapor, Mist, Etc.) Patents (Class 95/116)
  • Patent number: 8303930
    Abstract: The present invention relates to various processes for recovering high purity gaseous hydrogen and high purity gaseous carbon dioxide from the gas stream produced using steam hydrocarbon reforming, especially steam methane reforming, utilizing a H2 pressure swing adsorption unit followed by either a CO2 vacuum swing adsorption unit or a CO2 vacuum swing adsorption unit in combination with an additional CO2 pressure swing adsorption unit. By using an uncoupled H2 PSA and CO2 VSA unit it is possible to produce high purity H2 and high purity CO2. The present invention further relates to a process for optimizing the recovery of CO2 from waste gas streams produced during the hydrogen purification step of a steam hydrocarbon reforming/H2 pressure swing adsorption unit utilizing either a CO2 vacuum swing adsorption unit or a CO2 vacuum swing adsorption unit in combination with a CO2 pressure swing adsorption unit.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: November 6, 2012
    Assignees: American Air Liquide, Inc., Air Liquide Industrial U.S. LP
    Inventors: Yudong Chen, Glenn Fair
  • Patent number: 8291609
    Abstract: An apparatus is disclosed for drying grain in a storage bin as well as the method of drying the grain. The apparatus includes an air blower positioned outwardly of the storage bin which has an air inlet end and an air discharge end. The air discharge end of the air blower is in communication with the interior of the storage bin. A heat exchanger is positioned in a spaced relationship with respect to the air blower and has an air passageway with an inlet end and an outlet end. The outlet end of the heat exchanger is spaced from the inlet end of the air blower. An infrared heater is spaced from the inlet end of the heat exchanger so that infrared rays from the infrared heater will be directed into the air passageway of the heat exchanger so that the heat exchanger will heat the air being drawn through the heat exchanger by the air blower with the air blower sucking heated air from the air passageway and blowing the same into the storage bin to dry the grain therein.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: October 23, 2012
    Inventor: James Zoucha
  • Publication number: 20120247333
    Abstract: Embodiments are described that generally relate to the storage and release of a gas using piezoelectric materials.
    Type: Application
    Filed: June 11, 2012
    Publication date: October 4, 2012
    Applicant: EMPIRE TECHNOLOGY DEVELOPMENT LLC
    Inventor: Seth Adrian Miller
  • Publication number: 20120238021
    Abstract: Methods for synthesizing macroscale 3D heteroatom-doped carbon nanotube materials (such as boron doped carbon nanotube materials) and compositions thereof. Macroscopic quantities of three-dimensionally networked heteroatom-doped carbon nanotube materials are directly grown using an aerosol-assisted chemical vapor deposition method. The porous heteroatom-doped carbon nanotube material is created by doping of heteroatoms (such as boron) in the nanotube lattice during growth, which influences the creation of elbow joints and branching of nanotubes leading to the three dimensional super-structure. The super-hydrophobic heteroatom-doped carbon nanotube sponge is strongly oleophilic and an soak up large quantities of organic solvents and oil. The trapped oil can be burnt off and the heteroatom-doped carbon nanotube material can be used repeatedly as an oil removal scaffold.
    Type: Application
    Filed: March 19, 2012
    Publication date: September 20, 2012
    Applicant: William Marsh Rice University
    Inventors: Daniel Paul Hashim, Pulickel M. Ajayan, Mauricio Terrones
  • Patent number: 8268046
    Abstract: Methods of purifying hydrogen-containing materials are described. The methods may include the steps of providing a purifier material comprising silica. The silica may be heated at temperature of about 100° C. or more in a dry atmosphere to form activated silica. The activated silica may be contacted with a starting hydrogen-containing material, where the activated silica reduces a concentration of one or more impurity from the starting hydrogen-containing material to form the purified hydrogen-containing material, and where the activated silica does not decompose the purified hydrogen-containing material.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: September 18, 2012
    Assignee: Matheson Tri-Gas
    Inventors: Tadaharu Watanabe, Mark Raynor, Ade Lau, Hirotaka Mangyo
  • Patent number: 8241402
    Abstract: A method of separation of hydrogen from gas mixtures consisting in that a gas mixture (3) with any hydrogen content is introduced into a closed space (4), in which a polymer foam (1) containing non-communicating pores (2) is placed. Due to the fact that the hydrogen partial pressure in pores (2) of the polymer foam (1) is lower, hydrogen penetrates into the pores. Hence, the gas mixture (3) leaving the closed space (4) is deficient in the hydrogen. The inlet of the gas mixture (3) into the closed space (4) can be interrupted at the time when the leaving mixture has the same composition as the introduced gas mixture (3) or earlier. Then the pressure in the closed space (4) is decreased and, due to the leveling of its partial pressure, hydrogen is released from the polymer foam (1) and can be received for further use. Its concentration is higher than in the starting gas mixture (3).
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: August 14, 2012
    Assignee: Institute of Macromolecular Chemistry AS CR, V.V.I.
    Inventor: Zbynek Pientka
  • Patent number: 8231712
    Abstract: The method enables control over carbon pore structure to provide sorbents that are particularly advantageous for the adsorption of specific gases. It involves preparation of a sorbent precursor material, carbonization of the precursor material, and, usually, activation of the carbonized material. The resultant material is subjected to heat treatment and/or to surface conditioning by a reducing gas at elevated temperatures.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: July 31, 2012
    Assignee: Advanced Fuel Research, Inc.
    Inventors: Marek A. Wójtowicz, Eric Rubenstein, Michael A. Serio
  • Patent number: 8231711
    Abstract: Toxic substances such as heavy metals are extracted from a medium using a sorbent composition. The sorbent composition is derived by sulfidation of red mud, which contains hydrated ferric oxides derived from the Bayer processing of bauxite ores. Exemplary sulfidizing compounds are H2S, Na2S, K2S, (NH4)2S, and CaSx. The sulfur content typically is from about 0.2 to about 10% above the residual sulfur in the red mud. Sulfidized red mud is an improved sorbent compared to red mud for most of the heavy metals tested (Hg, Cr, Pb, Cu, Zn, Cd, Se, Th, and U). Unlike red mud, sulfidized red mud does not leach naturally contained metals. Sulfidized red mud also prevents leaching of metals when mixed with red mud. Mixtures of sulfidized red mud and red mud are more effective for sorbing other ions, such as As, Co, Mn, and Sr, than sulfidized red mud alone.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: July 31, 2012
    Assignee: J. I. Enterprises, Inc.
    Inventor: Joseph Iannicelli
  • Publication number: 20120167761
    Abstract: A method comprising (i) providing a metal organic framework formed by AlIII ions to which fumarate ions are coordinated to produce a porous framework structure, (ii) bringing a substance into contact with the metal organic framework such that the substance is uptaken by the porous metal organic framework to provide storage of or controlled release of, the substance.
    Type: Application
    Filed: January 10, 2012
    Publication date: July 5, 2012
    Applicant: BASF SE
    Inventors: Christoph Kiener, Ulrich Müller, Markus Schubert
  • Patent number: 8197579
    Abstract: Embodiments are described that generally relate to the storage and release of a gas using piezoelectric materials.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: June 12, 2012
    Assignee: Empire Technology Development LLC
    Inventor: Seth Adrian Miller
  • Patent number: 8187361
    Abstract: Purified SiHCl3 and/or SiCl4 are used as a sweep gas across a permeate side of a gas separation membrane receiving effluent gas from a polysilicon reactor. The combined sweep gas and permeate is recycled to the reactor.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: May 29, 2012
    Assignee: America Air Liquide, Inc.
    Inventors: Sarang Gadre, Madhava R. Kosuri
  • Patent number: 8182775
    Abstract: Dry-scrubbing media compositions, methods of preparing same, and methods of use are provided. The compositions contain activated alumina and potassium carbonate. Optionally, activated carbon and other impregnates, such as sulfates of group 1A metals, are included in the compositions. The compositions exhibit improved efficiency and capacity for the removal of compounds such as chlorine or sulfur dioxide from an air-stream. The compositions are particularly useful for reducing or preventing the release of toxic gaseous compounds from the areas such as petroleum storage areas, refineries, drinking water systems, sewage treatment facilities, swimming pools, hospital morgues, animal rooms, and pulp and paper production sites.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: May 22, 2012
    Assignee: Purafil, Inc.
    Inventor: William G. England
  • Patent number: 8182768
    Abstract: A system for interfacing a sampling device and a chromatograph and for pre-concentrating analytes in a sample prior to introducing the sample into the chromatographic column is generally disclosed comprising an interface housing with a first channel and an adsorbent housing with a second channel, which contains at least one adsorbent. Valveless conduits permit fluid to be communicated between the sampling device and the first channel, between the first channel and the second channel, and the first channel and the column. In some embodiments, fluid flows in one direction when the analytes are adsorbed and in the opposite direction when analytes are desorbed. In certain embodiments, two different adsorbents are disposed in the second channel to adsorb different types of analytes.
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: May 22, 2012
    Assignee: PerkinElmer LAS, Inc.
    Inventors: Andrew Tipler, John H. Vanderhoef, James E. Botelho
  • Publication number: 20120067216
    Abstract: The present invention describes the use of isostructural zeolites with rho zeolitic structure in processes of adsorption and separation of the various components of natural gas.
    Type: Application
    Filed: October 13, 2011
    Publication date: March 22, 2012
    Inventors: Avelino CORMA CANOS, Miguel Palomino Roca, Fernando Rey Garcia, Susana Valencia Valencia
  • Patent number: 8118913
    Abstract: A process and system for the purification of germane containing phosphine to provide a purified germane product. One aspect of the present invention is a process for making a purified germane product containing less than 50 ppb of phosphine which comprises providing a phosphine contaminated germane gas hydrogen gas mixture; passing the germane gas hydrogen gas mixture through an adsorbent which selectively adsorbs phosphine and withdrawing therefrom a purified germane gas hydrogen mixture; and separating the purified germane gas from the hydrogen germane gas mixture.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: February 21, 2012
    Assignee: Voltaix, LLC
    Inventor: Gary D. Miller
  • Patent number: 8114195
    Abstract: A porous crystalline material has a tetrahedral framework comprising a general structure, M1-IM-M2, wherein M1 comprises a metal having a first valency, wherein M2 comprises a metal having a second valency different from said first valency, and wherein IM is imidazolate or a substituted imidazolate linking moiety.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: February 14, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Zheng Ni, John Zengel, David L. Stern
  • Patent number: 8088199
    Abstract: A method for obtaining particulate calcium carbonate having an average particle size less than about 12 microns is provided. The method includes the steps of (1) withdrawing from a pulp mill a mixture containing calcium carbonate; (2) treating the mixture to remove contaminants contained in the mixture to produce a treated mixture containing calcium carbonate and further having a chemical composition and/or purity which substantially inhibits the fusing together of calcium carbonate particulates; (3) recovering from the treated mixture particulate calcium carbonate having an average particle size less than about 12 microns. The calcium carbonate produced has a high surface area to volume ratio and is therefore highly reactive and suitable for numerous applications such as in the treatment of soil, filler paper production, paint production, and contaminant containment in coal stack emission assemblies.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: January 3, 2012
    Assignee: S&S Lime, Inc.
    Inventors: Gary Allen Olsen, John Carl Stuever, Susan Candace Stuever
  • Publication number: 20110308385
    Abstract: The present invention relates to selectively isolating gases using a natrolite-based zeolite, and more particularly, to a novel natrolite-based zeolite and to selectively isolating hydrogen and/or helium gas using a natrolite-based zeolite. The present invention is characterized in that gas containing hydrogen is brought into contact with a natrolite-based zeolite to selectively isolate the hydrogen. The present invention provides a sorbent which can selectively isolate hydrogen and/or helium, and provides a method for isolating the hydrogen and/or helium at room temperature or at a high temperature.
    Type: Application
    Filed: September 21, 2009
    Publication date: December 22, 2011
    Applicant: POSTECH ACADEMY-INDUSTRY FOUNDATION
    Inventor: Suk Bong Hong
  • Publication number: 20110247495
    Abstract: The present invention relates to a structure having a core-shell configuration. The core comprises a predetermined adsorber solid material, and the shell at least partially surrounding the core comprises a predetermined humidity controlling material, thereby enabling using said adsorber solid material for interacting with and thus storing therein a predetermined adsorbable gas under desired environmental conditions. The invention also discloses a pressure vessel for use in storing at least one gas.
    Type: Application
    Filed: April 22, 2010
    Publication date: October 13, 2011
    Inventors: Doron Marco, Shany Peled
  • Patent number: 8034165
    Abstract: A large single crystal of a complex such as an organic carboxylic acid metal complex, which crystal is useful as an adsorbent of various gases and vapors of organic solvents and as a hydrogen-absorbing material, as well as a process for producing the crystal, is disclosed. Two layers wherein an upper layer thereof is constituted by a solution containing a metal salt and an organic carboxylic acid having a conjugated system, or a solution containing a metal salt of the organic carboxylic acid having a conjugated system, and wherein a lower layer of the two layers is constituted by a solvent which is not miscible with the solvent of the solution, is formed. Vapor of pyrazine or a substituted pyrazine from a solution of pyrazine or the substituted pyrazine is introduced into the upper layer to allow reaction, thereby forming a large single crystal(s) of the organic carboxylic acid metal complex at the interface between the two layers, which crystal(s) has(have) a longer side with a size of not less than 0.8 mm.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: October 11, 2011
    Assignee: Yokohama City University
    Inventor: Satoshi Takamizawa
  • Patent number: 8025860
    Abstract: Acid mist may be removed efficiently from a gas stream using at least one fiber bed mist eliminator operating at elevated pressure of typically at least 2 bar (0.2 MPa), e.g. at about 4 bar (0.4 MPa) to about 50 bar (5 MPa). The invention has particular application in methods for processing carbon dioxide flue gas in which SO2 and/or NOx contaminants are converted at elevated pressure to sulfuric acid condensate and/or nitric acid condensate respectively.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: September 27, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Barry Wayne Diamond
  • Patent number: 8012446
    Abstract: NO2 may be removed from a carbon dioxide feed gas comprising NOx and at least one “non-condensable” gas as contaminants by passing the feed gas at a first elevated pressure through a first adsorption system that selectively adsorbs at least NO2 to produce at least substantially NO2-free carbon dioxide gas. The adsorption system is at least partially regenerated using a carbon dioxide-rich gas recovered from the substantially NO2-free carbon dioxide gas after purification. The invention has particular application in removing NOx and water from flue gas generated by oxyfuel combustion.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: September 6, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Andrew David Wright, Kevin Boyle Fogash, Vincent White, Jeffrey William Kloosterman, Timothy Christopher Golden, Paul Higginbotham
  • Patent number: 7993616
    Abstract: The disclosure provides methods and systems for sequestering and/or reducing sulfur oxides, nitrogen oxides and/or carbon dioxide present in industrial effluent fluid streams. A solid particulate material comprising a slag component, a binder component (distinct from the slag component), and optionally water is formed and then contacted with the effluent fluid stream to reduce at least one of the sulfur oxides, nitrogen oxides, and/or carbon dioxide. The contacting of the effluent stream may occur in a packed bed reactor with the solid dry particulate material. Methods of reducing pollutants from exhaust generated by combustion sources, lime and/or cement kilns, iron and/or steel furnaces, and the like are provided.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: August 9, 2011
    Assignee: C-Quest Technologies LLC
    Inventor: Douglas C. Comrie
  • Patent number: 7947119
    Abstract: In a hydrogen reservoir having a housing with a hydrogen storage material arranged in the housing for absorbing and releasing hydrogen as needed, the hydrogen reservoir includes at least one unit having a porous body surrounding a container in which the hydrogen storage material is contained and a method is provided for charging the hydrogen reservoir with hydrogen from a hydrogen filling stations.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: May 24, 2011
    Assignee: Daimler, AG
    Inventors: Daniel Gölz, Claude Keller, Wolfgang Polifke, Eberhard Schmidt-Ihn, David Wenger
  • Publication number: 20110112343
    Abstract: The present invention relates to a porous metal organic framework comprising at least one first organic compound and ions of at least one metal, with the skeleton of the framework being formed at least partly by the at least one first organic compound coordinating at least partly in a bidentate fashion to at least two ions of the at least one metal, where the at least one metal is lithium and the at least one first compound is derived from formic acid or acetic acid. The invention additionally relates to a process for preparing it and also its use for gas storage or separation.
    Type: Application
    Filed: July 28, 2009
    Publication date: May 12, 2011
    Applicant: BASF SE
    Inventors: Emi Leung, Ulrich Mueller, Gerhard Cox
  • Publication number: 20110048231
    Abstract: The present invention relates to sorbent compositions and methods to reduce the amount of mercury emitted into the atmosphere as a result of processing a mercury-containing material. The sorbent compositions include a sorbent source and at least one halogen material. The sorbent source is interacted with the halogen material to form a halogenated sorbent. The halogenated sorbent is contacted with a mercury-containing product (e.g., gas, vapor or mixtures thereof) which is produced as a result of processing a mercury-containing material. At least a portion of the mercury in the mercury-containing product is absorbed by the halogenated sorbent such that the level of mercury in said mercury-containing product is reduced.
    Type: Application
    Filed: June 23, 2010
    Publication date: March 3, 2011
    Inventor: Rabindra K. SINHA
  • Patent number: 7896935
    Abstract: A process of conducting a catalyst reaction or fluid separation in comprising: at least one process microchannel having a height, width and length, the height being up to about 10 mm, the process microchannel having a base wall extending in one direction along the width of the process microchannel and in another direction along the length of the process microchannel; at least one fin projecting into the process microchannel from the base wall and extending along at least part of the length of the process microchannel; and a catalyst or sorption medium supported by the fin.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: March 1, 2011
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Dongming Qiu, Richard Q. Long, Barry L. Yang, Thomas Yuschak, Steven T. Perry
  • Publication number: 20110041689
    Abstract: Heat-exchangers and biogas conditioners including a heat exchange member disposed between upper and lower flanges of the apparatus in which at least the heat exchange member is formed of a highly thermally conductive material (e.g., at least 50 W/m?K) such as aluminum or aluminum alloy. A bed of zeolite is loaded within the apparatus so as to be in contact with the heat exchange member. The heat exchange member is shaped and configured so that any given location of the zeolite bed is no more than about 3 inches from the heat exchange member comprising the highly thermally conductive material.
    Type: Application
    Filed: August 19, 2010
    Publication date: February 24, 2011
    Applicant: BRIGHAM YOUNG UNIVERSITY
    Inventors: Jaron C. Hansen, Lee D. Hansen
  • Patent number: 7887619
    Abstract: An adsorptive filter material for the adsorption of acids or acid forming substances from the air is presented, which comprises an ion exchange material. The ion exchange material comprises a strong alkaline anion exchange resin with a ratio of at least 60% in the hydrogencarbonate form and a cation exchange resin in the H form with a ratio of not more than 15%.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: February 15, 2011
    Assignee: artemis control AG
    Inventor: Jost Kames
  • Patent number: 7875102
    Abstract: A method for managing the use of flow-through monolithic sorbents for the sorption of a trace contaminant from a fluid stream, which comprises: providing two or more flow-through monolithic sorbents having a trace contaminant sorbed thereon, wherein the flow-through monolithic sorbents are positioned in an initial series to allow for passing a fluid stream from an upstream inlet end of the series to a downstream outlet end of the series; removing an inlet end portion of the flow-through monolithic sorbents from the inlet end position of the series; moving a downstream portion of the flow-through monolithic sorbents from a downstream position in the series to the inlet end position of the series; and placing a replacement flow-through monolithic sorbent portion in a downstream position of the series.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: January 25, 2011
    Assignee: Corning Incorporated
    Inventors: Kishor Purushottam Gadkaree, David Lathrop Morse
  • Patent number: 7858024
    Abstract: Non-evaporable getter alloys, such as Y 75%-Mn 15%-Al 10%, are provided and can be activated at relatively low temperatures and have good properties in sorbing a wide variety of gases, particularly hydrogen.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: December 28, 2010
    Assignee: Saes Getters S.p.A.
    Inventors: Alberto Coda, Alessio Corazza, Alessandro Gallitognotta, Luca Toia, Paola Baronio, Magda Bovisio
  • Patent number: 7850762
    Abstract: The invention relates to a method for reducing emissions due to gaseous decomposition products of an electrolyte of electrochemical storage devices in a motor vehicle, preferably double-layer capacitors with organic solvents as the electrolyte. According to this invention, the gaseous decomposition products are sent to an activated carbon filter and/or a molecular sieve for deposition of at least a portion of the decomposition products and/or a chemically reactive material and/or a catalytically active material for conversion of at least a portion of the decomposition products. In addition, devices for implementing the inventive method are described.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: December 14, 2010
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Steffen Lutz, Sebastian Scharner
  • Publication number: 20100276304
    Abstract: Method and apparatus for storing hydrogen. One embodiment of such a method comprises providing a storage apparatus having a substrate and a nanostructure mat on at least a portion of a side of the substrate. The nanostructure mat comprises a plurality of nanostructures having a surface ionization state which causes more than one layer of hydrogen to adsorb onto the nanostructures. The method can also include exposing the nanostructure mat to hydrogen such that more than one layer of hydrogen adsorbs onto the nanostructures.
    Type: Application
    Filed: July 15, 2010
    Publication date: November 4, 2010
    Applicants: WASHINGTON STATE UNIVERSITY RESEARCH FOUNDATION, IDAHO RESEARCH FOUNDATION, INC.
    Inventors: Grant Norton, David McIlroy
  • Patent number: 7824473
    Abstract: Disclosed herein are metal-organic frameworks of metals and boron rich ligands, such as carboranes and icosahedral boranes. Methods of synthesizing and using these materials in gas uptake are disclosed.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: November 2, 2010
    Assignee: Northwestern University
    Inventors: Chad A. Mirkin, Joseph T. Hupp, Omar K. Farha, Alexander M. Spokoyny, Karen L. Mulfort
  • Publication number: 20100242729
    Abstract: This invention relates to adsorbents useful for storing hydrogen and other small molecules, and to methods for preparing such adsorbents. The adsorbents are produced by heating carbonaceous materials to a temperature of at least 900° C. in an atmosphere of hydrogen.
    Type: Application
    Filed: June 7, 2010
    Publication date: September 30, 2010
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: MARK BRANDON SHIFLETT, SUBRAMANIAM SABESAN, STEVEN RAYMOND LUSTIG, PRATIBHA LAXMAN GAI
  • Patent number: 7789943
    Abstract: Temperature-adjustable pore size molecular sieves comprise a plurality of metal clusters bound with a plurality of amphiphilic ligands, each ligand comprising a functionalized hydrophobic moiety and a functionalized hydrophilic moiety, and wherein the metal clusters and amphiphilic ligand hydrophilic moieties form a metal cluster layer, the metal cluster layer forming at least one hydrophilic pore. On each side of the metal cluster layer, a plurality of associated amphiphilic ligand hydrophobic moieties cooperate with the metal cluster layer to form a tri-layer and a plurality of tri-layers are held in proximity with each other to form at least one hydrophobic chamber.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: September 7, 2010
    Assignee: Miami University
    Inventors: Hong-Cai Zhou, Shengqian Ma
  • Publication number: 20100218676
    Abstract: Toxic substances such as heavy metals are extracted from a medium using a sorbent composition. The sorbent composition is derived by sulfidation of red mud, which contains hydrated ferric oxides derived from the Bayer processing of bauxite ores. Exemplary sulfidizing compounds are H2S, Na2S, K2S, (NH4)2S, and CaSx. The sulfur content typically is from about 0.2 to about 10% above the residual sulfur in the red mud. Sulfidized red mud is an improved sorbent compared to red mud for most of the heavy metals tested (Hg, Cr, Pb, Cu, Zn, Cd, Se, Th, and U). Unlike red mud, sulfidized red mud does not leach naturally contained metals. Sulfidized red mud also prevents leaching of metals when mixed with red mud. Mixtures of sulfidized red mud and red mud are more effective for sorbing other ions, such as As, Co, Mn, and Sr, than sulfidized red mud alone.
    Type: Application
    Filed: May 18, 2010
    Publication date: September 2, 2010
    Applicant: J.I. Enterprises, Inc.
    Inventor: Joseph Iannicelli
  • Publication number: 20100200501
    Abstract: The present invention relates to methods of making and using and compositions of metal nanoparticles formed by green chemistry synthetic techniques. For example, the present invention relates to metal nanoparticles formed with solutions of plant extracts and use of these metal nanoparticles in removing contaminants from soil and groundwater and other contaminated sites. In some embodiments, the invention comprises methods of making and using compositions of metal nanoparticles formed using green chemistry techniques.
    Type: Application
    Filed: May 18, 2009
    Publication date: August 12, 2010
    Applicant: VERUTEK TECHNOLOGIES ,INC.
    Inventors: George E. Hoag, John B. Collins, Rajender S. Varma, Mallikarjuna N. Nadagouda
  • Patent number: 7771512
    Abstract: Method and apparatus for storing hydrogen. One embodiment of such a method comprises providing a storage apparatus having a substrate and a nanostructure mat on at least a portion of a side of the substrate. The nanostructure mat comprises a plurality of nanostructures having a surface ionization state which causes more than one layer of hydrogen to adsorb onto the nanostructures. The method can also include exposing the nanostructure mat to hydrogen such that more than one layer of hydrogen adsorbs onto the nanostructures.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: August 10, 2010
    Assignees: Washington State University Research Foundation, Idaho Research Foundation, Inc.
    Inventors: Grant Norton, David McIIRoy
  • Publication number: 20100186588
    Abstract: The disclosure provides zeolitic frameworks for gas separation, gas storage, catalysis and sensors. More particularly the disclosure provides zeolitic frameworks (ZIFs). The ZIF of the disclosure comprises any number of transition metals or a homogenous transition metal composition.
    Type: Application
    Filed: July 16, 2008
    Publication date: July 29, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Omar M. Yaghi, Hiroyasu Furukawa, Bo Wang
  • Publication number: 20100170393
    Abstract: A metal-organic framework-based mesh-adjustable molecular sieve (MAMS) exhibiting a temperature-dependent mesh size. The MAMS comprises a plurality of metal clusters bound with a plurality of amphiphilic ligands, each ligand comprising a hydrophobic moiety and a functionalized hydrophilic moiety, and wherein the metal clusters and amphiphilic ligand functionalized hydrophilic moieties form a metal cluster layer, the metal cluster layer forming at least one hydrophilic pore. On each side of the metal cluster layer, a plurality of associated amphiphilic ligand hydrophobic moieties cooperate with the metal cluster layer to form a tri-layer and a plurality of tri-layers are packed in a facing-spaced apart relationship to form at least one hydrophobic pore.
    Type: Application
    Filed: March 22, 2010
    Publication date: July 8, 2010
    Applicant: MIAMI UNIVERSITY
    Inventors: Hong-Cai Zhou, Shengqian MA
  • Patent number: 7731781
    Abstract: The invention provides methods and apparatuses for removing aerosols and, in some cases, vapor phase contaminants, such as mercury, from a gas stream. One method is directed to the removal of additional aerosols from a gas stream from which aerosols have previously been removed by using a screen in combination with a primary aerosol collection device. Another method is directed to the removal of both aerosols and vapor phase contaminants by using a sorbent in combination with a screen. Another method is directed to the removal of vapor phase contaminants by using a catalyst to convert the contaminant to a form that is more easily removed from the gas stream and optionally injecting a chemical to increase the rate of conversion. The invention also provides various apparatuses for use in performing the various methods of the invention.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: June 8, 2010
    Assignee: Electric Power Research Institute, Inc.
    Inventors: Mark Simpson Berry, Ramsay Chang
  • Publication number: 20100132549
    Abstract: The disclosure relates generally to a gas-separation system for separating one or more components from a multi-component gas using Zeolitic imidazolate or imidazolate-derived framework.
    Type: Application
    Filed: May 9, 2008
    Publication date: June 3, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Omar M. Yaghi, Hideki Hayashi, Rahul Banerjee
  • Patent number: 7727308
    Abstract: Non-evaporable getter alloys are provided which can be activated at relatively low temperatures and are capable of efficiently sorbing hydrogen.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: June 1, 2010
    Assignee: Saes Getters S.p.A.
    Inventors: Alberto Coda, Alessandro Gallitognotta, Debora Caccia, Paola Baronio, Luca Toia, Mario Porro
  • Patent number: 7722701
    Abstract: The subject of the invention is method and envelope structure for handling gas diffusion of airships and other balloons to significantly decrease, respectively fully eliminate envelope diffusion of gases through envelopes of airships and other balloons. During the method according to the invention the gases diffused through the envelope (8, 9) of airships and other balloons are collected into a separator space (2). These gases are separated from the mixture of this separator space by physical and/or chemical action and forwarded back to their sources. The invention is further an envelope structure for handling gas diffusion of airships and other balloons for applying methods according to the invention.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: May 25, 2010
    Inventor: Imre Nehez
  • Publication number: 20100116136
    Abstract: The method enables control over carbon pore structure to provide sorbents that are particularly advantageous for the adsorption of specific gases. It involves preparation of a sorbent precursor material, carbonization of the precursor material, and, usually, activation of the carbonized material. The resultant material is subjected to heat treatment and/or to surface conditioning by a reducing gas at elevated temperatures.
    Type: Application
    Filed: December 24, 2009
    Publication date: May 13, 2010
    Inventors: Marek A. Wójtowicz, Eric Rubenstein, Michael A. Serio
  • Patent number: 7708815
    Abstract: Embodiments of the invention relate to a composite hydrogen storage material comprising active material particles and a binder, wherein the binder immobilizes the active material particles sufficient to maintain relative spatial relationships between the active material particles.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: May 4, 2010
    Assignee: Angstrom Power Incorporated
    Inventor: Joerg Zimmermann
  • Patent number: 7708803
    Abstract: The invention provides methods and apparatuses for removing additional aerosols and in some cases additional particulate matter from a gas stream, wherein a certain portion of such aerosols and particulate matter has already been removed using a primary aerosol and particulate collection device. In some embodiments, the invention includes a method for removing additional aerosols from a gas stream, including passing a gas stream having a plurality of aerosols through a gas duct; removing a first portion of the plurality of the aerosols using a primary aerosol collector; passing the gas steam through a screen; collecting at least a second portion of the plurality of aerosols on the screen; and cleaning a portion of the screen outside of the gas duct. The invention also provides various apparatuses for use in performing the method of the invention.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: May 4, 2010
    Assignee: Electric Power Research Institute, Inc.
    Inventors: Mark Simpson Berry, Ramsay Chang
  • Patent number: 7695546
    Abstract: An adsorbent for organic compounds consisting of filler granules, which contain 20 to 99.9 wt. % of fillers and a binder. The adsorbent is produced by mixing at least one binder with at least one filler and performing granulation in a mixing or granulation apparatus. The adsorbent may be used for adsorbing and/or absorbing organic and/or inorganic substances from a liquid or gaseous phase.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: April 13, 2010
    Assignee: Evonik Degussa GmbH
    Inventors: Matthias Schmitt, Martin Kuge, Reinhard Stober, Udo Görl, Jürgen Leimann, Susanne Esser, Peter Kopietz, Silke Teike
  • Patent number: 7674320
    Abstract: Hydrogen gas at a hydrogen refueling site is cooled below liquid nitrogen temperature (e.g., about 80K) for more efficient adsorption of hydrogen on hydrogen adsorbent particles in the fuel storage of a hydrogen powered vehicle. When compressed hydrogen gas is available it may be cooled with liquid nitrogen and then sub-cooled below about 70K by a Joule-Thompson expansion. When liquid hydrogen provides hydrogen gas it may be cooled below liquid nitrogen temperatures by mixing with liquid hydrogen or by heat exchange with liquid hydrogen.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: March 9, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventor: Senthil Kumar Vadivelu