Multi-walled Patents (Class 977/752)
  • Patent number: 8531029
    Abstract: A system and method are provided for fabricating a low electric resistance ohmic contact, or interface, between a Carbon Nanotube (CNT) and a desired node on a substrate. In one embodiment, the CNT is a Multiwalled, or Multiwall, Carbon Nanotube (MWCNT), and the interface provides a low electric resistance ohmic contact between all conduction shells, or at least a majority of conduction shells, of the MWCNT and the desired node on the substrate. In one embodiment, a Focused Electron Beam Chemical Vapor Deposition (FEB-CVD) process is used to deposit an interface material near an exposed end of the MWCNT in such a manner that surface diffusion of precursor molecules used in the FEB-CVD process induces lateral spread of the deposited interface material into the exposed end of the MWCNT, thereby providing a contact to all conduction shells, or at least a majority of the conduction shells, of the MWCNT.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: September 10, 2013
    Assignee: Georgia Tech Research Corporation
    Inventors: Andrei G. Fedorov, Konrad Rykaczewski
  • Publication number: 20130224934
    Abstract: The present disclosure provides a nanotube solution being treated with a molecular additive, a nanotube film having enhanced adhesion property due to the treatment of the molecular additive, and methods for forming the nanotube solution and the nanotube film. The nanotube solution includes a liquid medium, nanotubes in the liquid medium, and a molecular additive in the liquid medium, wherein the molecular additive includes molecules that provide source elements for forming a group IV oxide within the nanotube solution. The molecular additive can introduce silicon (Si) and/or germanium (Ge) in the liquid medium, such that nominal silicon and/or germanium concentrations of the nanotube solution ranges from about 5 ppm to about 60 ppm.
    Type: Application
    Filed: March 9, 2012
    Publication date: August 29, 2013
    Applicant: NANTERO INC.
    Inventors: David A. ROBERTS, Rahul SEN, Peter SITES, J. Thomas KOCAB, Billy Smith, Feng GU
  • Publication number: 20130221285
    Abstract: Disclosed is a hybrid polymer composite for electromagnetic wave shielding, and a method for fabricating the same. Specifically, the hybrid polymer composite may be fabricated by combining a microcapsule that is surface coated with at least one carbon nanotube and includes a phase change material (PCM), whose phase easily transitions from solid to liquid upon exposure to heat, with at least one carbon fiber and a matrix polymer. The disclosed hybrid polymer composite has enhanced electromagnetic wave shielding properties that result, in part, from the ability of the PCM to dissipate and remove heat generated by electromagnetic absorption. Additionally, the disclosed composite has excellent conductivity due to its polymer properties and the formation of a network between fillers and the polymer.
    Type: Application
    Filed: May 1, 2012
    Publication date: August 29, 2013
    Applicant: HYUNDAI MOTOR COMPANY
    Inventors: Kyong Hwa SONG, Han Saem LEE, Jin Woo KWAK, Byung Sam CHOI
  • Publication number: 20130216390
    Abstract: Carbon nanotube-reinforced composites are produced by incorporating up to 0.7% by weight of carbon nanotubes into a liquid polymeric material a polymeric material. The viscosity of the carbon nanotube-containing liquid polymeric is sufficiently low that it can be used in vacuum infusion and pultrusion processes to produce large articles such as wind turbine blades.
    Type: Application
    Filed: February 20, 2012
    Publication date: August 22, 2013
    Applicant: Bayer MaterialScience LLC
    Inventors: Usama Younes, Serkan Unal
  • Publication number: 20130214214
    Abstract: A conductive elastic composite that retains conductivity despite stretching, wherein the conductive elastic composite comprises an elastomeric matrix, carbon nanotubes and carbon fibers.
    Type: Application
    Filed: February 19, 2013
    Publication date: August 22, 2013
    Inventors: David L. Carnahan, Joe Zakielarz
  • Patent number: 8515117
    Abstract: A bobbin includes a carbon nanotube film structure and an amorphous carbon structure. The carbon nanotube film structure defines a number of micropores therein. The amorphous carbon structure is composited with the carbon nanotube structure. The amorphous carbon structure comprises a number of amorphous carbon particles received in the micropores.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: August 20, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Liang Liu, Jia-Ping Wang
  • Patent number: 8512533
    Abstract: A biosensor includes a plurality of electrodes and a receptor. The plurality of electrodes comprises a plurality of carbon nanotubes. The receptor are located between the plurality of electrodes and electrically connected to the plurality of carbon nanotubes of the plurality of electrodes. In addition, the receptor reacts to a measured object to lead current variation which is transmitted by the plurality of electrodes.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: August 20, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Xue-Shen Wang, Qun-Qing Li, Shou-Shan Fan
  • Publication number: 20130200309
    Abstract: The present disclosure relates to a nanocomposite material containing carbon nanotube coated glass fiber and graphite, in which fiber-shaped conductive particles obtained by coating a glass fiber with carbon nanotube as a conductive material with a good electromagnetic wave shielding property are hybridized with graphite sheets having a nanometer thickness and having an excellent heat conductivity, thereby creating a nanocomposite material with excellent electromagnetic wave shielding and heat dissipation properties. The nanocomposite material may be applied to a wide variety of electronics fields requiring both electromagnetic wave shielding and heat dissipation property, such as automotive electronic component housings, components of an electric car, mobile phones, and display devices.
    Type: Application
    Filed: April 11, 2012
    Publication date: August 8, 2013
    Applicant: Hyundai Motor Company
    Inventors: Kyong Hwa SONG, Jin Woo KWAK, Byung Sam CHOI
  • Publication number: 20130200296
    Abstract: The present disclosure relates to a polymer nanocomposite including a metal-carbon nanotube coated glass fiber and graphite, in which a metal-carbon nanotube coated glass fiber serving as an electromagnetic wave shielding material is hybridized with graphite having an excellent heat conductivity, thereby improving the electromagnetic wave shielding performance in a low frequency range. The polymer nancomposite according to the disclosure is broadly applicable to a variety of fields requiring electromagnetic wave shielding performance such as, for example, various electronic component housings for a vehicle, components of an electric vehicle, a mobile phone, and a display device, and a method of preparing the polymer nanocomposite.
    Type: Application
    Filed: April 10, 2012
    Publication date: August 8, 2013
    Applicant: HYUNDAI MOTOR COMPANY
    Inventors: Kyong Hwa Song, Byung Sam Choi
  • Publication number: 20130202865
    Abstract: The disclosure provides an electromagnetic shielding composite material, and a method for manufacturing the same. The electromagnetic shielding composite material includes: a polymer sheet; and an acicular carbon nanotube layer including acicular portions of carbon nanotubes fixed on the polymer sheet. The method for manufacturing the electromagnetic shielding composite material includes: preparing a carbon nanotube dispersion solution; applying the carbon nanotube dispersion solution to the surface of a polymer sheet; and drying the polymer sheet to which the carbon nanotube dispersion solution is applied and then forming an acicular structure of carbon nanotubes on the polymer sheet. The composite material has superb electromagnetic wave shielding properties suitable for a variety of electronics applications.
    Type: Application
    Filed: May 1, 2012
    Publication date: August 8, 2013
    Applicant: Hyundai Motor Company
    Inventors: Byung Sam Choi, Kyong Hwa Song, Han Saem Lee, Jin Woo Kwak
  • Patent number: 8501049
    Abstract: A semiconductive composition and a power cable using the same are provided. A semiconductive composition includes, per 100 parts by weight of a polyolefin base resin, 0.5 to 2.15 parts by weight of carbon nanotubes, and 0.1 to 1 parts by weight of an organic peroxide crosslinking agent.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: August 6, 2013
    Assignee: LS Cable & System Ltd.
    Inventors: Yoon-Jin Kim, Chang-Mo Ko, Ung Kim
  • Patent number: 8501233
    Abstract: The present invention relates to compositions and methods for treating cancer and, in particular, to composition and methods comprising nanostructures. In one embodiment, the present invention provides a composition comprising a mixture, the mixture comprising at least one nanoparticle and at least one chemotherapeutic.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: August 6, 2013
    Assignees: Wake Forest University, Wake Forest University Health Sciences
    Inventors: David Loren Carroll, John H. Stewart, IV, Nicole H. Levi
  • Publication number: 20130195751
    Abstract: Provided are a self-assembled conjugate of a host molecule containing compound and a guest molecule containing compound, a delivery composition of a bioactive material comprising the self-assembled conjugate and a bioactive material to be delivered, and a composition for tissue engineering containing the self-assembled conjugate and a cell.
    Type: Application
    Filed: January 31, 2012
    Publication date: August 1, 2013
    Applicant: POSTECH ACADEMY-INDUSTRY FOUNDATION
    Inventors: Sei Kwang HAHN, Kimoon KIM, Hyuntae JUNG, Jeong-A YANG, Kyeng Min PARK
  • Publication number: 20130197122
    Abstract: The present invention relates to nanocomposites comprising nanoparticles and a thermoplastic polymer composition, said nanocomposite being characterized by improved homogeneity, and in consequence by improved properties. Further, the present invention relates to a process for the production of such nanocomposites by first dispersing the nanoparticles in a dispersant and subsequent blending with a thermoplastic polymer composition.
    Type: Application
    Filed: March 2, 2011
    Publication date: August 1, 2013
    Applicant: TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventors: Séverine Gauchet, Jacques Michel, Olivier Lhost, Pascal Navez, Jacques Everaert, Romain Luijkx, Marc Dupire
  • Publication number: 20130190182
    Abstract: A super-conductive tube used for a discharge device is formed integrally by a super-conductive material. The super-conductive tube is a hollow tube formed by a front end surface, a rear end surface, an inner tube wall and an outer tube wall. An interior of the super-conductive tube is formed with a hollow space and an interior of the hollow space is in a vacuum state. The inner tube wall and the outer tube wall are formed by extending the front end surface toward the rear end surface and an end of the outer tube wall is extended with a guide portion toward the discharge device. Accordingly, when the super-conductive tube is applied to a discharge device, electrical energy will be generated by the super-conductive tube through a magnetic field that results from an operation of electric current, after the discharge device has released electric energy.
    Type: Application
    Filed: January 23, 2012
    Publication date: July 25, 2013
    Inventor: Chao-Yuan LIANG
  • Publication number: 20130183439
    Abstract: A method includes the steps of receiving a conductor element formed from a plurality of carbon nanotubes; and exposing the conductor element to a controlled amount of a dopant so as to increase the conductance of the conductor element to a desired value, wherein the dopant is one of bromine, iodine, chloroauric acid, hydrochloric acid, hydroiodic acid, nitric acid, and potassium tetrabromoaurate. A method includes the steps of receiving a conductor element formed from a plurality of carbon nanotubes; and exposing the conductor element to a controlled amount of a dopant solution comprising one of chloroauric acid, hydrochloric acid, nitric acid, and potassium tetrabromoaurate, so as to increase the conductance of the conductor element to a desired value.
    Type: Application
    Filed: January 17, 2012
    Publication date: July 18, 2013
    Inventors: John A. Starkovich, Edward M. Silverman, Hsiao-Hu Peng
  • Publication number: 20130181352
    Abstract: Provided are a method of growing carbon nanotubes laterally, including forming catalyst dots to grow carbon nanotubes on a substrate, forming a sacrificial layer including a plurality of nanochannels including regions having the catalyst dots formed therein, and growing carbon nanotubes through the nanochannels, and a field effect transistor using the method.
    Type: Application
    Filed: March 1, 2012
    Publication date: July 18, 2013
    Applicant: Industry-Academic Cooperation Foundation at NamSeoul Unversity
    Inventors: Sun-Woo Lee, Boong-Joo Lee
  • Publication number: 20130180852
    Abstract: A working electrode includes a conducting layer, a carbon nanotube layer electrophoretically deposited on the conducting layer; and a gold nanoparticle layer sputter-deposited on the carbon nanotube layer. A sensor chip having the working electrode and a method of fabricating the working electrode are also disclosed.
    Type: Application
    Filed: September 14, 2012
    Publication date: July 18, 2013
    Inventors: Chien-Chong Hong, Hong-Ren Jian, Kuo-Ti Peng, I-Ming Chu
  • Publication number: 20130177807
    Abstract: A binder for an electrode of a lithium battery, and a lithium battery containing the binder. The binder includes: a carbon nanotube; and a polymer chemically bonded to the carbon nanotube, and thus may form a conducting path by improving dispersion of the carbon nanotube. Accordingly, the binder may have high capacity and improve the lifetime of the lithium battery.
    Type: Application
    Filed: August 29, 2012
    Publication date: July 11, 2013
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Beom-Wook LEE, Hye-Sun JEONG, Hye-Ran LEE
  • Publication number: 20130171515
    Abstract: An anode material is provided for a surface of an electrode. The anode material comprises carbon-containing substrates and unsaturated compounds. At least one chemical bond is formed between the unsaturated compounds and the surfaces of the carbon-containing substrates.
    Type: Application
    Filed: April 23, 2012
    Publication date: July 4, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Li-Duan Tsai, Wei-Hsin Wu, Yueh-Wei Lin, Chia-Chen Fang
  • Publication number: 20130171054
    Abstract: A supported catalyst for synthesizing multi-walled carbon nanotubes includes a supporting body and a metal catalyst including Fe, Co, and Mn in a mole ratio according to Equation (1): Fe:Co:Mn=1:x:y??(1) wherein 2.0?x?4.0 and 0.01?y?5.00. The supported catalyst can be prepared by dissolving the metal catalysts into a solvent to prepare an aqueous solution of the metal catalysts; dissolving supporting body materials into a solvent to prepare an aqueous solution of the supporting body material; mixing the aqueous solutions and heating the mixed solution at temperature of about 100° to about 800° C. under normal atmospheric pressure for about 10 to about 40 min. Multi-walled carbon nanotubes can be prepared by placing the supported catalyst in chemical vapor deposition (TCVD) equipment and feeding hydrocarbon gas and hydrogen gas at a temperature of about 650° to about 1,100° C. under normal atmospheric pressure.
    Type: Application
    Filed: December 14, 2012
    Publication date: July 4, 2013
    Applicant: Cheil Industries Inc.
    Inventor: Cheil Industries Inc.
  • Patent number: 8475760
    Abstract: The invention relates to an apparatus for producing nanotubes, the apparatus being adapted to produce doped and/or undoped single-walled or multi-walled nanotubes, the apparatus comprising at least a thermal reactor. In accordance with the invention, the reactor is at least of the hottest part thereof and at least partly manufactured from a material that is at least partly sublimed into the thermal reactor as a result of the thermal reactor being heated, and the sublimed material at least partly participates in the growth of the nanotubes.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: July 2, 2013
    Assignee: Beneq Oy
    Inventors: Markku Rajala, Pekka Soininen, Anssi Hovinen, Jari Sinkko
  • Publication number: 20130161066
    Abstract: The present invention provides a method for fabricating a carbon nanotube-loaded electrode enabling that hybrid carbon nanotubes comprising dendrimer-encapsulated metal nanoparticles covalently immobilized on carbon nanotubes via a first covalent bond are made and such hybrid carbon nanotubes are then covalently immobilized on a metal electrode coated with a self-assembled monolayer via a second covalent bond. Also provided is a carbon nanotube-loaded electrode made by the method. The electrode thus made possesses high durability, reactivity and stability.
    Type: Application
    Filed: December 23, 2011
    Publication date: June 27, 2013
    Applicant: NATIONAL TAIWAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Toyoko Imae, Ampornphan Siriviriyanun
  • Publication number: 20130149447
    Abstract: A method of growing carbonaceous particles comprises depositing carbon from a carbon source, onto a particle nucleus, the particle nucleus being a carbon-containing material, an inorganic material, or a combination comprising at least one of the foregoing, and the carbon source comprising a saturated or unsaturated compound of C20 or less, the carbonaceous particles having a uniform particle size and particle size distribution. The method is useful for preparing polycrystalline diamond compacts (PDCs) by a high-pressure, high temperature (HPHT) process.
    Type: Application
    Filed: December 9, 2011
    Publication date: June 13, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Oleg A. Mazyar, Soma Chakraborty, Oleksandr Kuznetsov, Anthony A. DiGiovanni, Gaurav Agrawal, Michael H. Johnson
  • Patent number: 8460711
    Abstract: A method for synthesizing carbon nanotube drug carriers and the carbon nanotube drug carriers are disclosed. Initially, carbon nanotubes, nitric acid, and sulfuric acid are mixed to oxidize carbon nanotubes in a first mixture. The oxidized carbon nanotubes are then extracted from the first mixture. The oxidized carbon nanotubes and monohydrated citric acid are mixed to synthesize carbon nanotubes grafted with poly(citric acid) in a second mixture. The carbon nanotubes grafted with poly(citric acid) are then extracted from the second mixture. The carbon nanotubes grafted with poly(citric acid) and 4-(dimethylamino)pyridine are dissolved in anhydrous dimethylformamide in a third mixture. Next, a mixture that comprises a drug is added to the third mixture to synthesize the carbon nanotubes grafted with poly(citric acid) and the drug in a fourth mixture. Then, the carbon nanotubes grafted with poly(citric acid) and the drug are extracted from the fourth mixture.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: June 11, 2013
    Inventors: Fatemeh Atyabi, Mohsen Adeli, Zahra Sobhani, Rassoul Dinarvand, Mohammad Hossein Ghahremani
  • Patent number: 8461571
    Abstract: In accordance with an example embodiment of the present invention, an apparatus including a nanopillar and a graphene film, the graphene film being in contact with a first end of the nanopillar, wherein the nanopillar includes a metal, the contact being configured to form an intrinsic field region in the graphene film, and wherein the apparatus is configured to generate a photocurrent from a photogenerated charge carrier in the intrinsic field region.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: June 11, 2013
    Assignee: Nokia Corporation
    Inventor: Alan Colli
  • Publication number: 20130140498
    Abstract: Methods and systems for improved dispersion and solubility of carbon materials such as carbon nanotubes through novel binary solvent blends, which include in some embodiments, a mixture of a dibasic ester blend and DMSO.
    Type: Application
    Filed: November 29, 2012
    Publication date: June 6, 2013
    Applicant: RHODIA OPERATIONS
    Inventor: RHODIA OPERATIONS
  • Publication number: 20130143998
    Abstract: A resin composite material including fine graphite particles including plate-like graphite particles, an aromatic vinyl copolymer which is adsorbed on the plate-like graphite particles and which has a vinyl aromatic monomer unit represented by the following formula: —(CH2—CHX)—(X represents a phenyl group, a naphthyl group, an anthracenyl group, or a pyrenyl group, provided that these groups may have substituents); a fibrous inorganic filler; and a resin matrix.
    Type: Application
    Filed: December 5, 2012
    Publication date: June 6, 2013
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventor: Kabushiki Kaisha Toyota Chuo Kenkyusho
  • Publication number: 20130140499
    Abstract: The present invention relates to a conductive polymer composition for a PTC element with decreased NTC characteristics, using carbon nanotubes, a PTC binder resin, and a cellulose-based or polyester-based resin for fixing the carbon nanotubes and the PTC binder, and to a PTC element, a circuit and a sheet heating element using the same.
    Type: Application
    Filed: September 19, 2011
    Publication date: June 6, 2013
    Applicant: LG HAUSYS, LTD.
    Inventors: Seong-Hoon Yue, Yong-Bae Jung, Min-Hee Lee, Won-Kook Kim, Dong-Joo Kwon
  • Publication number: 20130137324
    Abstract: The present invention provides carbon nanotube coated fabric compositions for the purpose tuning the optical properties of fabric, in particular the optical transmittance, absorption, and reflectance in the visible, NIR and mid-IR ranges. The carbon nanotube coated fabrics of the present invention exhibit relatively uniform absorptivity and reflectivity of light across visible and IR spectral ranges and are ideal for use in stealth operations for counteracting night vision detection devices. The carbon nanotube coatings are thin, flexible coatings exhibiting high thermal and chemical stability, strong adhesion, low weight, and high tensile strength. In one embodiment, the composition includes an insulator layer for thermally isolating the CNT coating and establishing thermal equilibrium with the surrounding environment through the absorption of thermal IR emitted from hot objects. Processes for preparing the carbon nanotube coated fabrics are also described herein.
    Type: Application
    Filed: March 25, 2011
    Publication date: May 30, 2013
    Inventor: Xiaowu Shirley Tang
  • Publication number: 20130136994
    Abstract: An improved anode material for a lithium ion battery is disclosed. The improved anode material can improve both electric conductivity and the mechanical resilience of the anode, thus drastically increasing the lifetime of lithium ion batteries.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 30, 2013
    Inventors: Jun Ma, Zhaojie Wei, Guanghui Feng, Bin He, Gang Xu, Tao Zheng
  • Patent number: 8449858
    Abstract: Systems and methods for the purification of carbon nanotubes (CNTs) by continuous liquid extraction are disclosed. Carbon nanotubes are introduced to a flow of liquid that enables the separation of CNTs from impurities due to differences in the dispersibility of the CNTs and the impurities within the liquid. Examples of such impurities may include amorphous carbon, graphitic nanoparticles, and metal containing nanoparticles. The continuous extraction process may be performed in one or more stages, where one or more of extraction parameters may be varied between the stages of the continuous extraction process in order to effect removal of selected impurities from the CNTs. The extraction parameters may include, but are not limited to, the extraction liquid, the flow rate of the extraction liquid, the agitation of the liquid, and the pH of the liquid, and may be varied, depending on the impurity to be removed from the CNTs.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: May 28, 2013
    Assignee: Carbon Solutions, Inc.
    Inventor: Robert C. Haddon
  • Patent number: 8448790
    Abstract: A filter includes a membrane having a plurality of nanochannels formed therein. A first surface charge material is deposited on an end portion of the nanochannels. The first surface charge material includes a surface charge to electrostatically influence ions in an electrolytic solution such that the nanochannels reflect ions back into the electrolytic solution while passing a fluid of the electrolytic solution. Methods for making and using the filter are also provided.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: May 28, 2013
    Assignee: International Business Machines Corporation
    Inventors: John M. Cotte, Christopher V. Jahnes, Hongbo Peng, Stephen M. Rossnagel
  • Publication number: 20130126216
    Abstract: An electrically conductive, thermosetting elastomeric composition is provided. The composition may comprise: an initially substantially non-electrically conductive, thermosetting base polymer; a particulate filler comprising electrically conductive particles; and an electrically conductive polymer additive. The non-electrically conductive, thermosetting base polymer, the particulate filler and the electrically conductive polymer additive are mixed substantially macroscopically homogeneously.
    Type: Application
    Filed: December 27, 2012
    Publication date: May 23, 2013
    Inventors: Ajit KHOSLA, Bonnie Lynne GRAY
  • Patent number: 8445587
    Abstract: Improved mechanical properties of either clay or carbon nanotube (CNT)-reinforced polymer matrix nanocomposites are obtained by pre-treating nanoparticles and polymer pellets prior to a melt compounding process. The clay or CNTs are coated onto the surfaces of the polymer pellets by a milling process. The introduction of moisture into the mixture of the nanoparticles and the polymer pellets results in the nanoparticles more easily, firmly, and thoroughly coating onto the surfaces of the polymer pellets.
    Type: Grant
    Filed: July 18, 2010
    Date of Patent: May 21, 2013
    Assignee: Applied Nanotech Holdings, Inc.
    Inventors: Dongsheng Mao, Zvi Yaniv
  • Publication number: 20130116350
    Abstract: The present application includes iron catalysts promoted with Mo, K and optionally Cu on a multi-walled carbon nanotube (MWCNT) support for high molecular weight hydrocarbon synthesis from synthesis gas.
    Type: Application
    Filed: November 2, 2012
    Publication date: May 9, 2013
    Applicant: UNIVERSITY OF SASKATCHEWAN
    Inventor: UNIVERSITY OF SASKATCHEWAN
  • Publication number: 20130108826
    Abstract: In various embodiments, the present invention provides method of forming composites. Such methods generally comprise: (1) applying carbon nanotubes onto a system, wherein the system comprises at least one of an electric field or a magnetic field, and wherein the at least one electric field or magnetic field unidirectionally aligns the carbon nanotubes; and (2) applying a polymer onto the carbon nanotubes while the carbon nanotubes are unidirectionally aligned by the at least one electric field or magnetic field. The application of the polymer onto the carbon nanotubes forms composites that comprise unidirectionally aligned carbon nanotubes embedded in the polymer. In further embodiments, the present invention provides polymer composites formed by the methods of the present invention.
    Type: Application
    Filed: April 6, 2011
    Publication date: May 2, 2013
    Applicant: William Marsh Rice University
    Inventors: Divya Kannan Chakravarthi, Ahmad Salman, Enrique V. Barrera, Michael T. Searfass, Kyle Kissell
  • Publication number: 20130104665
    Abstract: In one aspect, the present invention relates to a layered structure usable in a strain sensor. In one embodiment, the layered structure has a substrate with a first surface and an opposite, second surface defining a body portion therebetween; and a film of carbon nanotubes deposited on the first surface of the substrate, wherein the film of carbon nanotubes is conductive and characterized with an electrical resistance. In one embodiment, the carbon nanotubes are aligned in a preferential direction. In one embodiment, the carbon nanotubes are formed in a yarn such that any mechanical stress increases their electrical response. In one embodiment, the carbon nanotubes are incorporated into a polymeric scaffold that is attached to the surface of the substrate. In one embodiment, the surfaces of the carbon nanotubes are functionalized such that its electrical conductivity is increased.
    Type: Application
    Filed: October 29, 2012
    Publication date: May 2, 2013
    Applicant: BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS
    Inventor: Board of Trustees of the University of Arkansas
  • Publication number: 20130101835
    Abstract: A carbon nanotube paste composition including carbon nanotubes, an organopolysiloxane including an alkenyl group, an organohydrogensiloxane including a hydrosilyl group, and a first catalyst effective to catalyze an addition reaction between the alkenyl group and the hydrosilyl group.
    Type: Application
    Filed: October 19, 2012
    Publication date: April 25, 2013
    Applicant: SAMSUNG ELECTRONICS CO. LTD.
    Inventor: Samsung Electronics Co. Ltd.
  • Publication number: 20130102719
    Abstract: A dispersion includes a carbonaceous nanoparticle, a dispersant including a graft polymer having a poly(alkylene glycol) side chain, and a polar solvent. An article coated with the dispersion and a method of making the dispersion are disclosed.
    Type: Application
    Filed: April 13, 2012
    Publication date: April 25, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Hendrik John, Claus-Peter Klages, Sven Hartwig
  • Publication number: 20130095314
    Abstract: In some embodiments, the present invention provides methods of immobilizing carbon nanotubes on a surface, wherein the method comprises: (1) mixing carbon nanotubes with a superacid to form a carbon nanotube solution; and (2) exposing the carbon nanotube solution to the surface. The exposing results in the immobilization of the carbon nanotubes on the surface. In some embodiments, the method occurs without the utilization of carbon nanotube wrapping molecules. Other embodiments of the present invention pertain to systems that comprise immobilized carbon nanotubes on a surface, as developed by the aforementioned methods.
    Type: Application
    Filed: January 11, 2011
    Publication date: April 18, 2013
    Applicant: William Marsh Rice University
    Inventors: Angel A. Marti-Arbona, Avishek Saha, Matteo Pasquali
  • Patent number: 8420729
    Abstract: It is disclosed a method for preparing a nano hybrid resin containing carbon nano materials as graphitizing agents with predetermined characteristics by formation of graphite phase in residual carbon.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: April 16, 2013
    Inventors: Mohamad Ali Sharif Sheikhaleslami, Farhad Golestanifard, Hossein Sarpoolaky
  • Publication number: 20130090542
    Abstract: The present disclosure provides robust implantable micro-component electrodes that can be used in a variety of medical devices. The medical device may be a neural probe that can monitor or stimulate neural activity in an organism's brain, spine, nerves, or organs, for example. The micro-component electrode has a small physical profile, with ultra-thin dimensions, while having high strength and flexibility. The micro-electrode has an electrically conductive core material, e.g., carbon. The surface of the core material includes one or more electrically conductive regions coated with an electrically conductive material and one or more non-conductive regions having an electrically non-conductive biocompatible polymeric coating. Implantable devices having such micro-components are capable of implantation in an organism for very long durations.
    Type: Application
    Filed: June 16, 2011
    Publication date: April 11, 2013
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Daryl R. Kipke, Takashi Daniel Yoshida Kozai, Nick Langhals, Joerg Lahann, Nicholas A. Kotov, Xiaopei Deng, Paras Patel
  • Publication number: 20130089790
    Abstract: A self-supporting carbon electrode can include, or consist essentially of, nanostructured carbon, for example, oxygen-functionalized nanostructured carbon.
    Type: Application
    Filed: October 11, 2011
    Publication date: April 11, 2013
    Inventors: Hye Ryung Byon, Seung Woo Lee, Betar Gallant, Yang Shao-Horn, Paula Hammond, Nasim Hyder
  • Patent number: 8415423
    Abstract: A melt-kneaded product includes: a disperse medium selected from an a rubber, elastomer, thermoplastic resin, or thermosetting resin; and a filling material constituted by nano-size filler particles having a mutually aggregating nature, said nano-size filler particles being uniformly dispersed in the disperse medium.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: April 9, 2013
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Hiroshi Shimizu, Yongjin Li
  • Patent number: 8415012
    Abstract: A membrane electrode assembly (MEA) for a fuel cell comprising a catalyst layer and a method of making the same. The catalyst layer can include a plurality of catalyst nanoparticles, e.g., platinum, disposed on buckypaper. The catalyst layer can have 1% or less binder prior to attachment to the membrane electrode assembly. The catalyst layer can include (a) single-wall nanotubes, small diameter multi-wall nanotubes, or both, and (b) large diameter multi-wall nanotubes, carbon nanofibers, or both. The ratio of (a) to (b) can range from 1:2 to 1:20. The catalyst layer can produce a surface area utilization efficiency of at least 60% and the platinum utilization efficiency can be 0.50 gPt/kW or less.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: April 9, 2013
    Assignee: Florida State University Research Foundation, Inc.
    Inventors: Jian-ping Zheng, Zhiyong Liang, Ben Wang, Chun Zhang, Wei Zhu
  • Publication number: 20130084636
    Abstract: Disclosed are scaffolds for regeneration of articular cartilage which are applicable to both the superficial zone and the middle zone of articular cartilage, and a method for manufacturing the same. The scaffolds have sufficient mechanical properties to support the implantation and regeneration of chondrocytes, and allow cells to show high cell viability with a high content of sulfated glycosaminoglycans (GAGs). In addition, being applicable to both the superficial zone and the middle zone of articular cartilage, the scaffolds facilitate cell adhesion and provide biomimetic surface environments that are effective for growing and differentiating stem cells. Therefore, the scaffolds are helpful in regenerating damaged articular cartilage, thus finding applications in stem cell therapy for articular cartilage damage and disease. Also, the application of the scaffolds can be extended to prostheses of the ear and the nose in plastic surgery.
    Type: Application
    Filed: February 22, 2011
    Publication date: April 4, 2013
    Applicant: TE BIOS CO., LTD
    Inventor: Michael Cho
  • Publication number: 20130075074
    Abstract: A thermal dissipation device for an electronic device includes a heat sink having predetermined shape and form for placing over the electronic device, wherein the heat sink includes fins for increase surface area; and carbon nanotubes formed on a surface of the heat sink and the fins to increase the thermal dissipation surface, thereby enhancing thermal dissipation. The carbon nanotubes comprises multi-walled carbon nanotubes (MWNTs), single-walled carbon nanotubes (SWNTs), graphenated carbon nanotubes.
    Type: Application
    Filed: November 9, 2012
    Publication date: March 28, 2013
    Inventor: Kuo-Ching CHIANG
  • Patent number: 8405189
    Abstract: An example of a carbon nanotube capacitor may include (i) a carbon nanotube film having carbon nanotubes and voids with dielectric material, (ii) conductive contacts and (iii) a dielectric layer. The carbon nanotube film may switch from a conductive state to a non-conductive state when a voltage is applied by creating an electrical break within the carbon nanotube film and providing a first conductive region and a second conductive region within the carbon nanotube film. The electrical break may separate the first conductive region from the second conductive region. The first and second conductive regions may store charge. An integrated device may include one or more transistors and one or more carbon nanotube capacitors. A method of making a carbon nanotube capacitor is also disclosed.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: March 26, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: Jonathan W. Ward, Quoc X. Ngo
  • Publication number: 20130069271
    Abstract: The present invention provides methods of strengthening composites. In some embodiments, such methods generally comprise a step of applying a dynamic stress to the composite in order to increase at least one of the stiffness or strength of the composite. In some embodiments, the composite comprises: a polymer matrix; nanomaterial fillers; and an interphase between the polymer matrix and the nanomaterial fillers. In some embodiments, the stiffness or strength of the composite increases permanently in response to the applied stress. In some embodiments, the increase in the stiffness or strength of the composite may be associated with an increase in the storage modulus of the composite, a decrease in the loss modulus of the composite, and a decrease in the loss tangent of the composite. In some embodiments, the applied stress results in a rearrangement of the interphase.
    Type: Application
    Filed: June 22, 2012
    Publication date: March 21, 2013
    Applicant: William Marsh Rice University
    Inventors: Pulickel M. Ajayan, Brent Joseph Carey