Multi-walled Patents (Class 977/752)
  • Publication number: 20130065798
    Abstract: Embodiments of the invention provide a drilling, drill-in, and completion water-based mud composition containing micro or nanoparticles for use in hydrocarbon drilling. The water-based drilling mud composition includes water present in an amount sufficient to maintain flowability of the water-based drilling mud composition, and drilling mud, which includes particles. The particles are selected from microparticles, nanoparticles, and combinations thereof. The water-based drilling mud composition also includes an effective amount of a multi-functional mud additive, which includes psyllium seed husk powder. The water-based drilling mud composition is operable to keep the particles stabilized and dispersed throughout the drilling mud composition in the absence of a surfactant.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 14, 2013
    Applicant: SAUDI ARABIAN OIL COMPANY
    Inventors: Md. Amanullah, Mohammed K. Al-Arfaj
  • Publication number: 20130065130
    Abstract: An electrode (110) is provided that may be used in an electrochemical device (100) such as an energy storage/discharge device, e.g., a lithium-ion battery, or an electrochromic device, e.g., a smart window. Hydrothermal techniques and vacuum filtration methods were applied to fabricate the electrode (110). The electrode (110) includes an active portion (140) that is made up of electrochemically active nanoparticles, with one embodiment utilizing 3d-transition metal oxides to provide the electrochemical capacity of the electrode (110). The active material (140) may include other electrochemical materials, such as silicon, tin, lithium manganese oxide, and lithium iron phosphate.
    Type: Application
    Filed: November 8, 2012
    Publication date: March 14, 2013
    Applicant: ALLIANCE FOR SUSTAINABLE ENERGY, LLC
    Inventor: ALLIANCE FOR SUSTAINABLE ENERGY, LLC
  • Publication number: 20130062211
    Abstract: A gas sensing device (nanosensor) includes a substrate with at least a pair of conductive electrodes spaced apart by a gap, and an electrochemically functionalized semiconductive nanomaterial bridging the gap between the electrodes to form a nanostructure network. The nanomaterial may be single-walled carbon nanotubes (SWNTs) functionalized by the deposition of nanoparticles selected from the group consisting of an elemental metal (e.g., gold or palladium), a doped polymer (e.g., camphor-sulfonic acid doped polyaniline), and a metal oxide (e.g. tin oxide). Depending on the nanoparticles employed in the functionalization, the nanosensor may be used to detect a selected gas, such as hydrogen. mercury vapor, hydrogen sulfide, nitrogen dioxide, methane, water vapor, and/or ammonia, in a gaseous environment.
    Type: Application
    Filed: November 8, 2012
    Publication date: March 14, 2013
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventor: The Regents Of The University Of California
  • Publication number: 20130059134
    Abstract: A method of conductively coupling a carbon nanostructure and a metal electrode is provided that includes disposing a carbon nanostructure on a substrate, depositing a carbon-containing layer on the carbon nanostructure, according to one embodiment, and depositing a metal electrode on the carbon-containing layer. Further provided is a conductively coupled carbon nanostructure device that includes a carbon nanostructure disposed on a substrate, a carbon-containing layer disposed on the carbon nanostructure and a metal electrode disposed on the carbon-containing layer, where a low resistance coupling between the carbon nanaostructure and metal elements is provided.
    Type: Application
    Filed: September 7, 2011
    Publication date: March 7, 2013
    Inventors: Yang Chai, Arash Hazeghi, Kuniharu Takei, Ali Javey, H.S. Philip Wong
  • Publication number: 20130059085
    Abstract: The present teachings include a coating composition which includes a liquid, fluoropolymer particles, carbon nanotubes, and a dispersant. The dispersant has a thermal degradation temperature below the melting temperature of the fluoropolymer particles.
    Type: Application
    Filed: October 30, 2012
    Publication date: March 7, 2013
    Applicant: XEROX CORPORATION
    Inventor: Xerox Corporation
  • Publication number: 20130059203
    Abstract: Provided are an anode active material for a lithium secondary battery, a method for preparing same, and a lithium secondary battery including same. An anode active material for a lithium secondary battery according to the present invention includes: active particles by means of which lithium ions may be absorbed/released; and a coating layer coated on the surface of the active particles, wherein the coating layer includes a first material which is a hollow nanofiber and a second material which is a carbon precursor or LTO.
    Type: Application
    Filed: May 11, 2011
    Publication date: March 7, 2013
    Applicant: ROUTE JJ CO., LTD.
    Inventors: Ji Jun Hong, Ki Taek Byun, Hyo Won Kim
  • Publication number: 20130052449
    Abstract: A method for controlling density, porosity and/or gap size within a nanotube fabric layer is disclosed. In one aspect, this can be accomplished by controlling the degree of rafting in a nanotube fabric. In one aspect, the method includes adjusting the concentration of individual nanotube elements dispersed in a nanotube application solution. A high concentration of individual nanotube elements will tend to promote rafting in a nanotube fabric layer formed using such a nanotube application solution, whereas a lower concentration will tend to discourage rafting. In another aspect, the method includes adjusting the concentration of ionic particles dispersed in a nanotube application solution. A low concentration of ionic particles will tend to promote rafting in a nanotube fabric layer formed using such a nanotube application solution, whereas a higher concentration will tend to discourage rafting. In other aspects, both concentration parameters are adjusted.
    Type: Application
    Filed: February 14, 2011
    Publication date: February 28, 2013
    Applicant: NANTERO INC.
    Inventors: Rahul Sen, J. Thomas Kocab, Feng Gu
  • Publication number: 20130048949
    Abstract: Disclosed are thin film transistor devices incorporating a thin film semiconductor derived from carbonaceous nanomaterials and a dielectric layer composed of an organic-inorganic hybrid self-assembled multilayer.
    Type: Application
    Filed: May 21, 2012
    Publication date: February 28, 2013
    Inventors: Yu Xia, He Yan, Antonio Facchetti
  • Publication number: 20130052489
    Abstract: A surface-mediated, lithium ion-exchanging energy storage device comprising: (a) A positive electrode (cathode) comprising a cathode active material that is not a functional material (bearing no functional group reactive with lithium), but having a surface area to capture or store lithium thereon; (b) A negative electrode (anode) comprising an anode active material having a surface area to capture or store lithium thereon; (c) A porous separator disposed between the two electrodes; and (d) A lithium-containing electrolyte in physical contact with the two electrodes, wherein the anode active material and/or the cathode active material has a specific surface area of no less than 100 m2/g in direct physical contact with the electrolyte to receive lithium ions therefrom or to provide lithium ions thereto; wherein at least one of the two electrodes contains therein a lithium source prior to a first charge or a first discharge cycle of the energy storage device.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Inventors: Aruna Zhamu, ChenGuang Liu, Xiqing Wang, Bor Z. Jang
  • Publication number: 20130048917
    Abstract: The composition described herein for the prevention of corrosion comprises: sacrificial metal particles more noble than a metal substrate to which the composition contacts; carbonaceous material that can form electrical contact between the sacrificial metal particles; and means for providing an anticorrosion coating material for the metal substrate. The composition can form a coating on a metal substrate surface. A method for applying the composition for the prevention of corrosion is also described herein.
    Type: Application
    Filed: August 31, 2012
    Publication date: February 28, 2013
    Applicant: Tesla Nanocoatings, Inc.
    Inventors: Jorma Antero Virtanen, Todd Hawkins
  • Publication number: 20130048339
    Abstract: In some embodiments, the present invention provides transparent electrodes that comprise: (1) a grid structure; and (2) a graphene film associated with the grid structure. In additional embodiments, the transparent electrodes of the present invention further comprise a substrate, such as glass. Additional embodiments of the present invention pertain to methods of making the above-described transparent electrodes. Such methods generally comprise: (1) providing a grid structure; (2) providing a graphene film; and (3) associating the graphene film with the grid structure. In further embodiments, the methods of the present invention also comprise associating the transparent electrode with a substrate.
    Type: Application
    Filed: March 8, 2011
    Publication date: February 28, 2013
    Applicant: William Marsh Rice University
    Inventors: James M. Tour, Yu Zhu
  • Patent number: 8384069
    Abstract: A semiconductor structure includes a support and at least one block provided on the support. The block includes a stack including alternating layers based on a first semiconductor material and layers based on a second semiconductor material different from the first material, the layers presenting greater dimensions than layers such that the stack has a lateral tooth profile and a plurality of spacers filling the spaces formed by the tooth profile, the spacers being made of a third material different from the first material such that each of the lateral faces of the block presents alternating lateral bands based on the first material and alternating lateral bands based on the third material. At least one of the lateral faces of the block is partially coated with a material promoting the growth of nanotubes or nanowires, the catalyst material exclusively coating the lateral bands based on the first material or exclusively coating the lateral bands based on the third material.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: February 26, 2013
    Assignee: Commissariat à l'Énergie Atomique et aux Énergies Alternatives
    Inventors: Carole Pernel, Cécilia Dupre
  • Patent number: 8383362
    Abstract: A fixative for biological tissue made up of polymerized carbon nanotubes encapsulating osmium nanoparticles and its method of synthesis are disclosed. Carbon nanotubes are first oxidized. Next, the oxidized carbon nanotubes and monohydrated citric acid are mixed to synthesize carbon nanotubes grafted with poly(citric acid). The carbon nanotubes grafted with poly(citric acid) are then mixed with an osmium source to synthesize carbon nanotubes grafted with poly(citric acid) encapsulating osmium nanoparticles. The nano-fixative of this application has been shown to improve fixation of biological tissue relative to well-known fixatives.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: February 26, 2013
    Inventors: Nahid Sarlak, Mostafa Karimi
  • Patent number: 8384863
    Abstract: A liquid crystal display screen includes a first electrode plate, a first alignment layer, a liquid crystal layer, a second alignment layer, and a second electrode plate opposite to the first electrode plate. The liquid crystal layer is sandwiched between the first electrode plate and the second electrode plate. The first alignment layer and the second alignment layer are respectively disposed on the first electrode plate and the second electrode plate, and face the liquid crystal layer. The first alignment layer and the second alignment layer respectively include a plurality of parallel first grooves and second grooves perpendicular to the first grooves formed thereon facing the liquid crystal layer. Furthermore, the first alignment layer and the second alignment layer respectively include a plurality of parallel and spaced carbon nanotube structures.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: February 26, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Wei-Qi Fu, Liang Liu, Kai-Li Jiang, Shou-Shan Fan
  • Publication number: 20130045328
    Abstract: High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The preferred manufacturing process involves the initial oxidation of the carbon nanostructures followed by a surface preparation process involving immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing a suitable quantity of non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means. The nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. The process can be controlled and repeated to obtain a desired film coverage.
    Type: Application
    Filed: October 11, 2012
    Publication date: February 21, 2013
    Applicant: Brookhaven Science Associates, LLC
    Inventor: Brookhaven Science Associates, LLC
  • Publication number: 20130042762
    Abstract: A gas filter comprises a housing (30) having a gas inlet (55), a gas outlet (65) and at least one chamber (70) therebetween containing carbon nanotubes (110). The chamber (70) has a port (90) and is configured for simultaneous gas ingress to and gas egress from the carbon nanotubes (110) through the port (90).
    Type: Application
    Filed: March 29, 2011
    Publication date: February 21, 2013
    Inventor: Dimitris Drikakis
  • Publication number: 20130043140
    Abstract: The present invention is related to a method for detecting at least one chemical analyte vapour in a gaseous environment comprising the steps of: providing a fibre-based electrochemical sensor, said fibre-based sensor comprising at least one type of composite fibres, said type of composite fibres comprising a co-continuous phase blend comprising a first and a second continuous polymer phase, the first polymer phase being sensitive to the chemical analyte vapour to be detected in use, wherein said first polymer phase comprises a dispersion of carbon nanotubes at a concentration above the percolation threshold and wherein the chemical analyte is soluble in said first polymer phase; measuring the initial electrical conductivity of the fibre-based sensor; bringing said fibre-based sensor into contact with at least one chemical analyte to induce a modification of the electrical conductivity of the fibres; measuring the modification of the resulting electrical conductivity of said fibre-based sensor and correla
    Type: Application
    Filed: October 26, 2010
    Publication date: February 21, 2013
    Applicants: UNIVERSITE DE BRETAGNE SUD, NANOCYL S.A.
    Inventors: Frederic Luizi, Luca Mezzo, Jean-François Feller, Mickaël Castro
  • Patent number: 8377556
    Abstract: Systems and methods for creating carbon nanotubes are disclosed that comprise a growing a nanotube on a tri-layer material. This tri-layer material may comprise a catalyst and at least one layer of Ti. This tri-layer material may be exposed to a technique that is used to grow a nanotube on a material such as a deposition technique.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: February 19, 2013
    Assignee: STMicroelectronics Asia Pacific Pte., Ltd.
    Inventors: Adeline Chan, Ivan Teo, Zhonglin Miao, Shanzhong Wang, Vincenzo Vinciguerra
  • Publication number: 20130039838
    Abstract: The present disclosure provides systems and methods for production of nanostructures using a plasma generator. In an embodiment, a system for use with a reactor for synthesis of nanostructures may include a chamber defining a pathway for directing a fluid mixture for the synthesis of nanostructures through the chamber. The system may further include one or more heating zones disposed along the chamber to provide a temperature gradient in the chamber to form catalyst particles upon which nanostructures can be generated from the components of the fluid mixture. The system may also include a plasma generator for generating a plasma flame in a conduit through which the fluid mixture may be passed to decompose a carbon source in the fluid mixture into its constituent atoms before proceeding into the reactor for formation of nanostructures.
    Type: Application
    Filed: July 27, 2012
    Publication date: February 14, 2013
    Applicant: Nanocomp Technologies, Inc.
    Inventors: David S. Lashmore, Robert Dean
  • Publication number: 20130032765
    Abstract: A composite for providing electromagnetic shielding including a plurality of elongate nanostructures; and a plurality of elongate conductive elements.
    Type: Application
    Filed: August 4, 2011
    Publication date: February 7, 2013
    Inventors: Vladimir Alexsandrovich Ermolov, Markku Anttoni Oksanen, Khattiya Chalapat, Gheorghe Sorin Paraoanu
  • Publication number: 20130026410
    Abstract: An electrostrictive composite includes a flexible polymer matrix, a plurality of carbon nanotubes and a plurality of reinforcing particles dispersed in the flexible polymer matrix. The carbon nanotubes cooperatively form an electrically conductive network in the flexible polymer matrix.
    Type: Application
    Filed: June 10, 2009
    Publication date: January 31, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: LU-ZHUO CHEN, CHANG-HONG LIU, SHOU-SHAN FAN
  • Publication number: 20130029234
    Abstract: A porous carbonaceous composite material including a core including a carbon nanotube (CNT); and a coating layer on the core, the coating layer including a carbonaceous material including a hetero element.
    Type: Application
    Filed: July 24, 2012
    Publication date: January 31, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Victor ROEV, Dong-min IM, Dong-joon LEE, Sang-bok MA
  • Publication number: 20130028829
    Abstract: Disclosed herein is a method of growth of enhanced adhesion MWCNTs on a substrate, referred to as the HGTiE process, the method comprising: chemical vapor deposition of an adhesive underlayer composed of alumina on a substrate composed of titanium or similar; chemical vapor deposition of a catalyst such as a thin film of iron on top of the adhesive underlayer; pretreatment of the substrate to hydrogen at high temperature; and exposure of the substrate to a feedstock gas such as ethylene at high temperature. The substrate surface may be roughened before placement of an adhesive layer through mechanical grinding or chemical etching. Finally, plasma etching of the MWCNT film may be performed with oxygen plasma. This method of growth allows for high strength adhesion of MWCNTs to the substrate the MWCNTs are grown upon.
    Type: Application
    Filed: July 28, 2011
    Publication date: January 31, 2013
    Inventors: John G. Hagopian, Stephanie A. Getty, Manuel A. Quijada
  • Publication number: 20130030117
    Abstract: The present invention provides a method of manufacturing polyamide-carbon nanotube composites. The method includes mixing a polyamide composition including 0.01-1% by weight of carbon nanotubes using a shearing rate equal to or greater than 1000-4400 sec?1.
    Type: Application
    Filed: November 10, 2011
    Publication date: January 31, 2013
    Applicants: GEMANKOREA CO., LTD., HYUNDAI MOTOR COMPANY
    Inventors: Kyong Hwa Song, Do Suck Han, Chi Hoon Choi, Chan Choi, Myung-Hwan Lee, Sang-Tae Lee
  • Publication number: 20130029333
    Abstract: The present disclosure includes a magnetic bead (MB) quantum dot (QD) nanoparticle assay for detecting, capturing, separating, and/or quantifying a target in a sample.
    Type: Application
    Filed: July 27, 2012
    Publication date: January 31, 2013
    Inventors: Ahjeong Son, Yeomin Yoon
  • Publication number: 20130022873
    Abstract: A method of growing electrochemically active materials in situ within a dispersed conductive matrix to yield nanocomposite cathodes or anodes for electrochemical devices, such as lithium-ion batteries. The method involves an in situ formation of a precursor of the electrochemically active materials within the dispersed conductive matrix followed by a chemical reaction to subsequently produce the nanocomposite cathodes or anodes, wherein: the electrochemically active materials comprise nanocrystalline or microcrystalline electrochemically active metal oxides, metal phosphates or other electrochemically active materials; the dispersed conductive matrix forms an interconnected percolation network of electrically conductive filaments or particles, such as carbon nanotubes; and the nanocomposite cathodes or anodes comprise a homogeneous distribution of the electrochemically active materials within the dispersed conductive matrix.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 24, 2013
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Jon Fold von Bulow, Hong-Li Zhang, Daniel E. Morse
  • Publication number: 20130015122
    Abstract: The nanocomposite membrane includes a composite of carbon nanotubes coated or chemically bonded with metal oxide nanoparticles. This composite is embedded within a polymeric matrix via interfacial polymerization on a polysulfone support. The metal oxide particles are selected to exhibit catalytic activity when filtering pollutants from water in a water treatment system, or for separating a gas from a liquid, or for selectively separating particles or ions from solution for reverse osmosis (e.g., for desalination systems), or other filtration requirements. A method of fabricating the nanocomposite membrane is also included herein.
    Type: Application
    Filed: July 11, 2011
    Publication date: January 17, 2013
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventor: TAWFIK ABDO SALEH AWADH
  • Publication number: 20130015411
    Abstract: The present invention relates to a method for preparing wholly aromatic polyimide powder with antistatic properties or electric conductivity. In particular, the present invention relates to a method for preparing wholly aromatic polyimide composite powder, comprising the steps of dissolving aromatic diamine in a phenolic polar organic solvent in which electrically conductive carbon black powder and multi-wall carbon nano-tube (MWCNT) powder are dispersed, adding aromatic tetracarboxylic dianhydride thereto, and polymerizing the resulting mixture. The wholly aromatic polyimide powder prepared according to the method of the present invention shows excellent antistatic properties or electric conductivity simultaneously with maintaining similar or equal heat-resistance and mechanical properties as compared to conventional polyimide resin.
    Type: Application
    Filed: December 8, 2010
    Publication date: January 17, 2013
    Applicant: DAELIM CORPORATION
    Inventors: Jin Soo Kang, Yong Jae Hwang
  • Patent number: 8354490
    Abstract: A method is provided for functionalizing nanoscale fibers including reacting a plurality of nanoscale fibers with at least one epoxide monomer to chemically bond the at least one epoxide monomer to surfaces of the nanoscale fibers to form functionalized nanoscale fibers. Functionalized nanoscale fibers and nanoscale fiber films are also provided.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: January 15, 2013
    Assignee: Florida State University Research Foundation
    Inventors: Shiren Wang, Zhiyong Liang, Ben Wang, Chun Zhang
  • Publication number: 20130012644
    Abstract: A carbon fiber composite material (50) includes an elastomer, and carbon nanofibers dispersed in the elastomer in an amount of 0.01 to 0.70 parts by mass based on 100 parts by mass of the elastomer, the carbon nanofibers having an average diameter of 0.4 to 7.0 nm. A method of producing a carbon fiber composite material includes mixing carbon nanofibers having an average diameter of 0.4 to 7.0 nm into an elastomer in an amount of 0.01 to 0.70 parts by mass based on 100 parts by mass of the elastomer, and tight-milling the mixture at 0 to 50° C. using an open roll at a roll distance of 0.5 mm or less to obtain a carbon fiber composite material (50).
    Type: Application
    Filed: June 15, 2012
    Publication date: January 10, 2013
    Applicants: SCHLUMBERGER TECHNOLOGY CORPORATION, SHINSHU UNIVERSITY, NISSIN KOGYO CO., LTD.
    Inventors: Ken'ichi Niihara, Toru Noguchi, Hiroyuki Ueki, Shigeki Inukai, Masaei Ito
  • Publication number: 20130004847
    Abstract: Combinations of materials are described in which high energy density active materials for negative electrodes of lithium ion batteries. In general, metal alloy/intermetallic compositions can provide the high energy density. These materials can have moderate volume changes upon cycling in a lithium ion battery. The volume changes can be accommodated with less degradation upon cycling through the combination with highly porous electrically conductive materials, such as highly porous carbon and/or foamed current collectors. Whether or not combined with a highly porous electrically conductive material, metal alloy/intermetallic compositions with an average particle size of no more than a micron can be advantageously used in the negative electrodes to improve cycling properties.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 3, 2013
    Inventors: Sujeet Kumar, James P. Buckley
  • Publication number: 20130005567
    Abstract: Platinum nanocatalysts on multi-walled carbon nanotubes (MWCNTs) functionalized with citric acid (CA) are disclosed, along with methods for the synthesis thereof.
    Type: Application
    Filed: March 17, 2011
    Publication date: January 3, 2013
    Inventors: Arunachala Kannan, Jiefeng Lin
  • Publication number: 20130001514
    Abstract: In accordance with an example embodiment of the present invention, an apparatus including a nanopillar and a graphene film, the graphene film being in contact with a first end of the nanopillar, wherein the nanopillar includes a metal, the contact being configured to form an intrinsic field region in the graphene film, and wherein the apparatus is configured to generate a photocurrent from a photogenerated charge carrier in the intrinsic field region.
    Type: Application
    Filed: June 29, 2011
    Publication date: January 3, 2013
    Inventor: Alan COLLI
  • Publication number: 20130005026
    Abstract: Point-of-care tools for screening biological samples for markers associated with pathogenic microbial infections. In particular, devices and systems for screening cervical cells for the expression of proteins, which occur as a result of human papillomavirus infection and progression to invasive cervical cancer.
    Type: Application
    Filed: May 11, 2012
    Publication date: January 3, 2013
    Applicant: Cermed Corporation
    Inventors: Peter GOMBRICH, Paul Vichi
  • Publication number: 20130004657
    Abstract: Carbon nanotube-based compositions and methods of making an electrode for a Li ion battery are disclosed. It is an objective of the instant invention to disclose a composition for preparing an electrode of battery, optionally a lithium ion battery, with incorporation of a bi-modal diameter distributed carbon nanotubes with more active material by having less total conductive filler loading, less binder loading, and better electrical contact between conductive filler with active battery materials such that battery performance is enhanced.
    Type: Application
    Filed: April 2, 2012
    Publication date: January 3, 2013
    Applicant: CNANO TECHNOLOGY LIMITED
    Inventors: Gang Xu, Jun Ma, Yan Zhang, Chunliang Qi, Dongmei Wei
  • Publication number: 20120328554
    Abstract: The present invention is related to a composition for the preparation of an anti-biofouling coating comprising: -a polymer fraction essentially consisting of polysiloxane; -a curing agent; -carbon nanotubes; -a metal-free catalyst consisting of an organic acid.
    Type: Application
    Filed: December 10, 2010
    Publication date: December 27, 2012
    Inventors: Alexandre Beigbeder, Redha Bella, Daniel Bonduel, Michael Claes, Philippe Dubois, Rosica Mincheva
  • Publication number: 20120326093
    Abstract: New methods for preparing carbon nanotube films having enhanced properties are provided. The method broadly provides reacting carbon nanotubes (CNTs) and compounds comprising a polyaromatic moieties in the presence a strong acid. During the reaction process, the polyaromatic moieties noncovalently bond with the carbon nanotubes. Additionally, the functionalizing moieties are further functionalized by the strong acid. This dual functionalization allows the CNTs to be dispersed at concentrations greater than 0.5 g/L in solution without damaging their desirable electronic and physical properties. The resulting solutions are stable on the shelf for months without observable bundling, and can be incorporated into solutions for printing conductive traces by a variety of means, including inkjet, screen, flexographic, gravure printing, or spin and spray coating.
    Type: Application
    Filed: June 22, 2012
    Publication date: December 27, 2012
    Applicant: BREWER SCIENCE INC.
    Inventor: Christopher Landorf
  • Publication number: 20120329947
    Abstract: Various methods and systems are provided for preparing a polymer nanocomposite. In one embodiment, among others, a method includes providing a first immiscible solution including an aqueous solution including polymer-coated nanoparticles and a first monomer and a second immiscible solution including an organic solution including a second monomer. The first and second immiscible solutions are in contact along an interface. A polymer nanocomposite, including the polymer-coated nanoparticles dispersed within the polymer matrix, is extracted from the interface. In another embodiment, a system includes a vessel and an extraction assembly. The vessel includes a first immiscible solution layer in contact with a second immiscible solution layer along an interface. The first immiscible solution layer includes an aqueous solution including polymer-coated nanoparticles and a first monomer. The second immiscible solution layer includes an organic solution including a second monomer.
    Type: Application
    Filed: June 20, 2012
    Publication date: December 27, 2012
    Applicant: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventor: Kirk Jeremy Ziegler
  • Patent number: 8337979
    Abstract: The present invention provides methods for uniform growth of nanostructures such as nanotubes (e.g., carbon nanotubes) on the surface of a substrate, wherein the long axes of the nanostructures may be substantially aligned. The nanostructures may be further processed for use in various applications, such as composite materials. For example, a set of aligned nanostructures may be formed and transferred, either in bulk or to another surface, to another material to enhance the properties of the material. In some cases, the nanostructures may enhance the mechanical properties of a material, for example, providing mechanical reinforcement at an interface between two materials or plies. In some cases, the nanostructures may enhance thermal and/or electronic properties of a material. The present invention also provides systems and methods for growth of nanostructures, including batch processes and continuous processes.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: December 25, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Brian L. Wardle, Anastasios John Hart, Enrique J. Garcia, Alexander Henry Slocum
  • Publication number: 20120321876
    Abstract: A process of forming a semiconductive carbon nanotube structure includes imposing energy on a mixture that contains metallic carbon nanotubes and semiconductive carbon nanotubes under conditions to cause the metallic carbon nanotubes to be digested or to decompose so that they may be separated away from the semiconductive carbon nanotubes.
    Type: Application
    Filed: August 27, 2012
    Publication date: December 20, 2012
    Inventors: Eugene P. Marsh, Gurtej S. Sandhu
  • Publication number: 20120315552
    Abstract: The present disclosure provides an electrode including an electrically conductive ink deposited thereon comprising: a nano-scale conducting material; a binding agent; and an enzyme; wherein said ink is essentially solvent free. In one embodiment, the ink includes at least one of a mediator, a cross-linking agent and a substrate as well. In one further embodiment, the electrode provided herein is used in a battery, fuel cell or sensor.
    Type: Application
    Filed: June 8, 2011
    Publication date: December 13, 2012
    Inventors: Vojtech Svoboda, Jianjun Wei, Sameer Singhal
  • Publication number: 20120312687
    Abstract: Functionalized membranes for use in applications, such as electrodeionization, can be prepared simply and efficiently by coating a conductive carbon nanotube and polymer membrane with a metal layer; and contacting the coated membrane with a solution comprises at least one electrochemically active and functional compound under conditions suitable for electrochemically depositing the electrochemically active and function compound on a surface of the metal-coated membrane. Such membranes may be reversible modified by chemically or electrochemically oxidizing the metal layer from the polymer membrane surface, thereby, providing a fresh surface which may be re-modified according to the preceding methods.
    Type: Application
    Filed: June 13, 2011
    Publication date: December 13, 2012
    Applicant: EMPIRE TECHNOLOGY DEVELOPMENT LLC
    Inventor: Seth Adrian Miller
  • Publication number: 20120312691
    Abstract: Functionalized membranes for use in applications, such as electrodeionization, can be prepared simply and efficiently by contacting a conductive carbon nanotube and polymer membrane with a solution containing at least one electrochemically active and functional compound under conditions suitable for electrochemically depositing the electrochemically active and function compound on a surface of the membrane.
    Type: Application
    Filed: June 13, 2011
    Publication date: December 13, 2012
    Applicant: EMPIRE TECHNOLOGY DEVELOPMENT LLC
    Inventor: Seth Adrian Miller
  • Publication number: 20120315539
    Abstract: A secondary battery capable of being charged after discharging is provided. The battery includes a positive electrode, made from a sheet of carbon nanotubes infiltrated with mixed metal oxides, and a negative electrode made from a sheet of carbon nanotubes with silicon or germanium particles.
    Type: Application
    Filed: February 7, 2012
    Publication date: December 13, 2012
    Applicant: Nanocomp Technologies, Inc.
    Inventors: David S. Lashmore, Amanda Simpson
  • Publication number: 20120313054
    Abstract: The present disclosure provides an aqueous based electrically conductive ink, which is essentially solvent free and includes a nano-scale conducting material; a binding agent; and an enzyme. In one embodiment, the ink includes at least one of a mediator, a cross-linking agent and a substrate as well. In one further embodiment, the present disclosure provides electrically conductive ink including a single walled, carboxylic acid functionalized carbon nanotube; 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride and N-hydroxy succinimide (NHS) ester; polyethyleneimine; an aqueous buffer; and glucose oxidase.
    Type: Application
    Filed: June 8, 2011
    Publication date: December 13, 2012
    Inventors: Vojtech Svoboda, Jianjun Wei, Sameer Singhal
  • Publication number: 20120308771
    Abstract: A nanostructure film, comprising at least one interconnected network of nanostructures, wherein the nanostructure film is optically transparent and electrically conductive. A method for improving the optoelectronic properties of a nanostructure film, comprising: forming a nanostructure film having a thickness that, if uniform, would result in a first optical transparency and a first sheet resistance that are lower than desired; and patterning holes in the nanostructure film, such that a desired higher second optical transparency and a second sheet resistance are achieved. A method for depositing a nanostructure film on a rigid substrate comprises: depositing the nanostructure film on a flexible substrate; and transferring the nanostructure film from the flexible substrate to a rigid substrate, wherein the flexible substrate comprises at least one of a release liner and a heat- or chemical-sensitive adhesive layer.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 6, 2012
    Inventors: Paul Drazaic, David Hecht, Michael O'Connell, Glen Irvin
  • Patent number: 8323607
    Abstract: A carbon nanotube structure includes a number of carbon wires and a number of second carbon nanotubes. Each of the carbon nanotube wires includes a number of first carbon nanotubes joined end to end by the carbon-carbon bonds therebetween. The carbon wires and the carbon nanotubes are joined by van der Waals attractive force therebetween.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: December 4, 2012
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai Liu, Kai-Li Jiang, Ying-Hui Sun, Shou-Shan Fan
  • Publication number: 20120298910
    Abstract: Provided is a sintered object which has excellent resistance to corrosion by corrosive halogen gases and by the plasmas thereof and has excellent thermal conductivity and excellent electrical conductivity. Even when applied to members for use in various vacuum process devices, the sintered object has few limitations on design. The sintered object is usable in a wide range of applications, and is highly versatile. Also provided is a method for producing the sintered object. Furthermore provided is a high-frequency transmission material which has direct-current electrical conductivity for reducing fluctuations in plasma potential and has capacitive properties that enable the material to transmit high-frequency power necessary for plasma excitation, and which has no fear of causing contamination of a sample with a metal and has resistance to corrosion by plasmas.
    Type: Application
    Filed: February 8, 2011
    Publication date: November 29, 2012
    Applicant: Sumitomo Osaka Cement Co., Ltd.
    Inventors: Katzuto Ando, Shintaro Hayashi, Hirokuni Kugimoto, Masayuki Ishizuka
  • Publication number: 20120301360
    Abstract: Devices used in conjunction with detecting analytes and methods of their manufacture are disclosed. A pre-concentrator device includes a thermoelectric material and an aerogel which includes a nanostructured material disposed on, and in thermal communication with, the thermoelectric material. Such a pre-concentrator is part of a detection system including a sensor. The detection system is used in a method for detecting analytes.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 29, 2012
    Applicant: LOCKHEED MARTIN CORPORATION
    Inventors: Mitchell W. MEINHOLD, Andrew A. GUZELIAN, Robert A. ROUFAIL, Brent M. SEGAL, James M. SPATCHER, Aaron G. SELL, Eric C. HOLIHAN, Jonathan A. NICHOLS
  • Publication number: 20120301870
    Abstract: This invention is directed to the application of a previously unknown property of nanomaterials—its ability to enhance protein activity and stability at high temperatures, in organic solvents, and in polymer composites. Nanomaterials such as single-walled carbon nanotubes (SWNTs) can significantly enhance enzyme function and stability in strongly denaturing environments. Experimental results and theoretical analysis reveal that the enhancement in stability is a result of the curvature of these nanoscale materials, which suppresses unfavorable protein-protein interactions.
    Type: Application
    Filed: April 26, 2012
    Publication date: November 29, 2012
    Inventors: Jonathan S. Dordick, Ravindra S. Kane, Prashanth Asuri, Sandeep S. Karajanagi, Alexey A. Vertegel, Richard W. Siegel