Of Chemical Property Or Presence Patents (Class 977/957)
  • Publication number: 20100201381
    Abstract: Devices, systems, and methods for detecting nucleic acid hybridization, including single nucleic base mutations at low concentrations, are disclosed, using surface-tethered hairpin loop oligonucleotide probes and metal-nanoparticles conjugated to a hybridization detection sequence that is capable of binding the stem region of the opened hairpin loop oligonucleotide probe, without the use of labeling or target modification and capable of recycling.
    Type: Application
    Filed: February 8, 2010
    Publication date: August 12, 2010
    Inventors: Samir M. Iqbal, Swati Goyal, Shawn M. Christensen, Mohammud R. Noor
  • Publication number: 20100178713
    Abstract: A substrate of a target substance-detecting element for detecting a target substance in a specimen based on localized surface plasmon resonance comprises a supporting member and a metal nano-dot group provided on the supporting member, metal nano-dots each of which is comprised in the metal nano-dot group and adjacent to each other are arranged with a gap between the metal nano-dots of not larger than 30 nm.
    Type: Application
    Filed: January 17, 2007
    Publication date: July 15, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Satoru Nishiuma, Masaya Ogino
  • Publication number: 20100155691
    Abstract: A gas sensor for detecting environmentally harmful gases is provided. The sensor includes an insulating substrate, a metal electrode formed on the insulating substrate, and a sensing layer formed on the metal electrode and including a semiconductor oxide (Lan+1NinO3n+1(n=1,2,3)) nanofiber. Therefore, a semiconductor oxide (Lan+1NinO3n+1(n=1,2,3)) has an ABO3-type basic crystalline structure and thus is stable in structure, and is a representative material having a nonstoichiometric composition due to oxygen defects. Since the semiconductor oxide has great oxygen defects on its surface, a great change in electrical resistance may be exhibited due to reactive gas adsorption and oxidation/reduction reaction on the oxide surface. Also, a method of fabricating the gas sensor is provided.
    Type: Application
    Filed: August 6, 2009
    Publication date: June 24, 2010
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Su Jae LEE, Jin Ah Park, Jaehyun Moon, Tae Hyoung Zyung
  • Publication number: 20100133119
    Abstract: The invention relates to electrodes for electrochemical analysis comprising: —an insulating surface; —carbon nanotubes situated on the insulating surface at a density of at least 0.1 ?mCNT Um?2; and—an electrically conducting material in electrical contact with the carbon nanotubes; wherein the carbon nanotubes cover an area of no more than about 5.0% of the insulating surface. Methods of making such electrodes and assay devices or kits with such electrodes, are also provided.
    Type: Application
    Filed: August 1, 2008
    Publication date: June 3, 2010
    Inventors: Julie Victoria Macpherson, Patrick Robert Unwin, Mark Newton
  • Publication number: 20100129925
    Abstract: A semiconductor nanowire is coated with a chemical coating layer that comprises a functional material which modulates the quantity of free charge carriers within the semiconductor nanowire. The outer surface of the chemical coating layer includes a chemical group that facilitates bonding with molecules to be detected through electrostatic forces. The bonding between the chemical coating layer and the molecules alters the electrical charge distribution in the chemical coating layer, which alters the amount of the free charge carriers and the conductivity in the semiconductor nanowire. The coated semiconductor nanowire may be employed as a chemical sensor for the type of chemicals that bonds with the functional material in the chemical coating layer. Detection of such chemicals may indicate pH of a solution, a vapor pressure of a reactive material in gas phase, and/or a concentration of a molecule in a solution.
    Type: Application
    Filed: November 26, 2008
    Publication date: May 27, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Lidija Sekaric, George S. Tulevski
  • Patent number: 7695609
    Abstract: The present invention is directed to systems and methods for detecting biological and chemical species in liquid and gaseous phase. The systems and methods utilize carbon nanotubes to enhance sensitivity and selectivity towards the reacting species by decreasing interference and detecting a wide range of concentrations.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: April 13, 2010
    Assignee: Applied Nanotech Holdings, Inc.
    Inventors: Prabhu Soundarrajan, James Novak
  • Publication number: 20100088040
    Abstract: Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA or RNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.
    Type: Application
    Filed: July 13, 2007
    Publication date: April 8, 2010
    Applicant: The Trustees of the University of Pennsylvania
    Inventor: Alan T. Johnson, JR.
  • Publication number: 20100072080
    Abstract: Disclosed are methods and devices for biomolecular detection, comprising a nanopipette, exemplified as a hollow inert, non-biological structure with a conical tip opening of nanoscale dimensions, suitable for holding an electrolyte solution which may contain an analyte such as a protein biomolecule to be detected as it is passed through the tip opening. Biomolecules are detected by specific reaction withy peptide ligands chemically immobilized in the vicinity of the tip. Analytes which bind to the ligands cause a detectible change in ionic current. A sensitive detection circuit, using a feedback amplifier circuit, and alternating voltages is further disclosed. Detection of Il-10 at a concentration of 4 ng/nl is also disclosed, as is detection of VEGF.
    Type: Application
    Filed: May 4, 2009
    Publication date: March 25, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Miloslav Karhanek, Chris D. Webb, Senkei Umehara, Nader Pourmand
  • Publication number: 20100039126
    Abstract: A sensor system for detecting a chemical or biological species includes a sensing element and a bias and measurement circuit. The sensing element includes nanochannels, each having an outer surface functionalized to chemically interact with the species to create a corresponding surface potential, and each having a sufficiently small cross section to exhibit a shift of a differential conductance characteristic into a negative bias operating region by a shift amount dependent on the surface potential. The bias and measurement circuit applies a bias voltage across two ends of the nanochannels sufficiently negative to achieve a desired dependence of the differential conductance on the surface potential, wherein the dependence has a steeply sloped region of high amplification substantially greater than a reference amplification at a zero-bias condition, thus achieving relatively high signal-to-noise ratio.
    Type: Application
    Filed: May 12, 2009
    Publication date: February 18, 2010
    Applicant: Trustees of Boston University
    Inventors: Yu Chen, Xihua Wang, Agniezska Kalinowski, Mi Hong, Pritiraj Mohanty, Shyamsunder Erramilli
  • Publication number: 20100019226
    Abstract: The invention relates to a semiconductor sensor device (10) for sensing a substance comprising at least one nanowire (11) which is formed on a surface of a semiconductor body (12) and which is connected at a first end to a first electrically conducting connection region (13) and at a second end to’ a second electrically conducting connection region (14) while a fluid (20) comprising a substance (30) to be sensed can flow along the nanowire (11) and the substance (30) to be sensed can influence’ the electrical properties of the nanowire (11), wherein the nanowire (11) comprises viewed in a longitudinal direction subsequently a first semiconductor subregion (1) comprising a first semiconductor material and a second semiconductor subregion (2) comprising a second semiconductor material different from the first semiconductor material. According to the invention’ the first semiconductor material comprises a IV element material and the second semiconductor material comprises a III-V compound.
    Type: Application
    Filed: September 17, 2007
    Publication date: January 28, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Meriman Nicoletta Kahya, Erik Petrus Antonius Maria Bakkers
  • Publication number: 20090327188
    Abstract: At least one resonator is disclosed having a plurality of nanoscale resonator elements, the at least one resonator having at least two, different resonant frequencies and configured to provide at least two signals in response to an input signal and at least two adders configured to weight the signals with respective weights and to add weighted signals so as to produce an output signal.
    Type: Application
    Filed: June 30, 2008
    Publication date: December 31, 2009
    Inventors: Tapani Ryhanen, Mark Welland
  • Patent number: 7638036
    Abstract: Nanosensors for detecting analytes and methods of detecting analytes have been developed in which the redox potential of a redox effector in solution is altered thereby causing changes in carbon nanotube conductance. The analyte may be detected in solution, eliminating the need for immobilizing the analyte on a support.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: December 29, 2009
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Salah Boussaad, Bruce A. Diner, Janine Fan, Vsevolod Rostovtsev, Ajit Krishnan
  • Patent number: 7635423
    Abstract: This invention relates to the field of nanotechnology. Specifically the invention describes a nanosensor for the detection of an analyte in which the redox potential in solution is altered thereby causing changes in carbon nanotube conductance.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: December 22, 2009
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Salah Boussaad, Bruce A. Diner, Janine Fan, Vsevolod Rostovtsev, Ajit Krishnan
  • Patent number: 7623972
    Abstract: Methods and systems for determining if one or more target molecules are present in a gas, by exposing a functionalized carbon nanostructure (CNS) to the gas and measuring an electrical parameter value EPV(n) associated with each of N CNS sub-arrays. In a first embodiment, a most-probable concentration value C(opt) is estimated, and an error value, depending upon differences between the measured values EPV(n) and corresponding values EPV(n;C(opt)) is computed. If the error value is less than a first error threshold value, the system interprets this as indicating that the target molecule is present in a concentration C?C(opt). A second embodiment uses extensive statistical and vector space analysis to estimate target molecule concentration.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: November 24, 2009
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jing Li, Meyya Meyyappan, Yijiang Lu
  • Publication number: 20090286344
    Abstract: A method of making a sensor comprises substantially laterally growing at least one nanowire having at least two segments between two electrodes, whereby a junction or connection is formed between the at least two segments; and establishing a sensing material adjacent to the junction or connection, and adjacent to at least a portion of each of the at least two segments, wherein the sensing material has at least two states.
    Type: Application
    Filed: July 27, 2009
    Publication date: November 19, 2009
    Inventors: Theodore I Kamins, Philip J. Kuekes, Carrie L. Donley, Jason J. Blackstock
  • Patent number: 7608902
    Abstract: A nanowire composite and a method of preparing the nanowire composite comprise a template having a plurality of hollow channels, nanowires formed within the respective channels of the template, and a functional element formed by removing a portion of the template so that one or more of the nanowires formed within the portion of the template are exposed. Since the nanowire composite can be prepared in a simple manner at low costs and can be miniaturized, the nanowire composite finds application in resonators and a variety of sensors.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: October 27, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Soon Jae Kwon, Byoung Lyong Choi, Eun Kyung Lee, Kyung Sang Cho, In Taek Han, Jae Ho Lee, Seong Jae Choi
  • Patent number: 7597788
    Abstract: A gas sensing mechanism and a gas sensor based on a semiconducting carbon nanotube diode structure are disclosed. The gas sensor operates by detecting the change in conductivity characteristic of the current vs. voltage behavior of an I—N, or I—P junction, in the carbon nanotube. In the presence of electrophilic gas species at the I—N junction, or nucleophilic gas species at the I—P junction, a P—N, or N—P, junction is created by doping of the carbon nanotube by the respective gas species. The resulting change from the undoped, instrinsic i-type to p-type, or n-type, creates a diode structure whose conductivity characteristics can be measured with high accuracy and selectivity.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: October 6, 2009
    Assignee: Applied Nanotech Holdings, Inc.
    Inventors: Thomas Visel, Prabhu Soundarrajan
  • Publication number: 20090242416
    Abstract: The present invention relates to a nanowire sensor and method for forming the same. More specifically, the nanowire sensor comprises at least one nanowire formed on a substrate, with a sensor receptor disposed on a surface of the nanowire, thereby forming a receptor-coated nanowire. The nanowire sensor can be arranged as a sensor sub-unit comprising a plurality of homogeneously receptor-coated nanowires. A plurality of sensor subunits can be formed to collectively comprise a nanowire sensor array. Each sensor subunit in the nanowire sensor array can be formed to sense a different stimulus, allowing a user to sense a plurality of stimuli. Additionally, each sensor subunit can be formed to sense the same stimuli through different aspects of the stimulus. The sensor array is fabricated through a variety of techniques, such as by creating nanopores on a substrate and electrodepositing nanowires within the nanopores.
    Type: Application
    Filed: May 29, 2009
    Publication date: October 1, 2009
    Inventors: Minhee Yun, Nosang Myung, Richard Vasquez, Margie L. Homer, Margaret A. Ryan, Shiao-Pin Yen, Jean-Pierre Fleurial, Ratnakumar Bugga, Daniel Choi, William Goddard, Abhijit Shevade, Mario Blanco, Tahir Cagin, Wely Floriano
  • Publication number: 20090216461
    Abstract: A method and system of monitoring for chemical or other toxic agents includes operating a plurality of first type sensors having a first level of sensitivity to an agent in a monitored area. Concurrently a second type sensor is operated having a second level of sensitivity to the agent in the monitored area, where the second level of sensitivity is at least ten times more sensitive than the first level of sensitivity. Input from the plurality of first type sensors and the second type sensor is received and analyzed, at a central location, in order to determine the presence of the agent in the monitored area.
    Type: Application
    Filed: December 29, 2008
    Publication date: August 27, 2009
    Inventors: Steven A. Sunshine, Timothy E. Burch
  • Patent number: 7575933
    Abstract: An electronic system for selectively detecting and identifying a plurality of chemical species, which comprises an array of nanostructure sensing devices, is disclosed. Within the array, there are at least two different selectivities for sensing among the nanostructure sensing devices. Methods for fabricating the electronic system are also disclosed. The methods involve modifying nanostructures within the devices to have different selectivity for sensing chemical species. Modification can involve chemical, electrochemical, and self-limiting point defect reactions. Reactants for these reactions can be supplied using a bath method or a chemical jet method. Methods for using the arrays of nanostructure sensing devices to detect and identify a plurality of chemical species are also provided.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: August 18, 2009
    Assignee: Nanomix, Inc.
    Inventors: Jean-Christophe P. Gabriel, Philip G. Collins, Keith Bradley, George Gruner
  • Patent number: 7545010
    Abstract: The invention provides a nanostructure including nanowires having very small diameters and integrated at a high density, and capable of being applied to still further high-functional devices. The invention provides a structure including a substrate or substrate having an underlayer, and a structure formed on the substrate or substrate having an underlayer, wherein the structure includes a columnar first part (part) and a second part (part) formed to surround the first part, and the second part comprises two or more types of materials capable of forming eutectic crystals, one type of the materials is a semiconductor material, and the height of the first part from the substrate is greater than the height of the second part from the substrate.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: June 9, 2009
    Assignee: Canon Kabushiki Kaisha
    Inventors: Shigeru Ichihara, Kaoru Konakahara, Tohru Den, Kazuhiko Fukutani
  • Publication number: 20090084673
    Abstract: There is described a gas sensor element 1 including a solid electrolyte body 11, insulators 15, 141, 142, 197, 161, 162, 163, 164, 165, and a pair of electrodes 121, 131 formed such that the solid electrolyte body 11 is held therebetween. The gas sensor element 1 satisfies the following requirement (a) and/or the requirement (b). (a) The solid electrolyte body 11 is made of ion-conductive composite material in which nanoparticles with specific particle diameters are dispersed in ion-conductive ceramics. (b) The insulators 15, 141, 197, 161, 162, 163, 164, 165 are made of insulative composite material in which nanoparticles with specific particle diameters are dispersed in insulative ceramics. Further, there is described a manufacturing method of a gas sensor element in which the particle diameter and dispersion quantity of the nanoparticles dispersed in the solid electrolyte body 11 and/or insulative ceramics 11 are controlled.
    Type: Application
    Filed: June 29, 2006
    Publication date: April 2, 2009
    Applicants: DENSO CORPORATION, NIPPON SOKEN, INC.
    Inventors: Itsuhei Ogata, Daisuke Makino, Satoshi Nakamura, Hiroo Imamura, Akio Tanaka
  • Patent number: 7481912
    Abstract: A pair of measuring electrodes comprising a first and a second, preferably in each case sheet-like electrode comprises an insulation layer arranged between said electrodes. One or more nanopores, which extend through said insulation layer as far as said first electrode, the surface of which is at least partially uncovered by said nanopores, are provided in each second electrode. The invention also describes a biosensor comprising a pair of measuring electrodes of this type, an electrochemical cell comprising a biosensor of this type and a process for producing said pair of measuring electrodes.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: January 27, 2009
    Assignee: NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tuebingen
    Inventors: Martin Stelzle, Wilfried Nisch
  • Patent number: 7452452
    Abstract: The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: November 18, 2008
    Assignee: The Trustees of Boston College
    Inventors: Zhifeng Ren, Yuehe Lin, Wassana Yantasee, Guodong Liu, Fang Lu, Yi Tu
  • Patent number: 7439562
    Abstract: The present invention concerns a method for modyfing at least an electronic property of a carbon nanotube or nanowire comprising exposing said nanotube or nanowire to an acid having the formula (I) wherein R1, R2 and R3 are chosen in the group comprising (H, F, Cl, Br, I) with at least one of R1, R2 and R3 being different from H. At least part of the nanotube or nanowire may be a channel region of a field effect transistor.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: October 21, 2008
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Stéphane Auvray, Jean-Philippe Bourgoin, Vincent Derycke, Marcelo Goffman
  • Publication number: 20080218740
    Abstract: Embodiments of the present invention are related to nanowire-based devices that can be configured and operated as modulators, chemical sensors, and light-detection devices. In one aspect, a nanowire-based device includes a reflective member, a resonant cavity surrounded by at least a portion of the reflective member, and at least one nanowire disposed within the resonant cavity. The nanowire includes at least one active segment selectively disposed along the length of the nanowire to substantially coincide with at least one antinode of light resonating within the cavity. The active segment can be configured to interact with the light resonating within the cavity.
    Type: Application
    Filed: February 29, 2008
    Publication date: September 11, 2008
    Inventors: R. Stanley Williams, Shih-Yuan Wang, Philip J. Kuekes, Theodore I. Kamins, Duncan Stewart, Alexandre M. Bratkovski, Jason Blackstock, Zhiyong Li
  • Patent number: 7388200
    Abstract: A sensing method includes exposing a nano-transducer having a controlled surface to a sample including at least one species. Adsorption of the species on the nano-transducer is transduced to a measurable signal as a function of time. Desorption of the species from the nano-transducer is also transduced to a measurable signal as a function of time. A residence time of the at least one species adsorbed on the nano-transducer is extracted from the measurable signals. The adsorption and desorption each define an individual measurable event.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: June 17, 2008
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Duncan R. Stewart, William M. Tong, R. Stanley Williams, Philip J. Kuekes, Sean Xiao-an Zhang, Kevin F. Peters, Kenneth J. Ward
  • Publication number: 20080078234
    Abstract: The present invention provides for variable-range hydrogen sensors and methods for making same. Such variable-range hydrogen sensors comprise a series of fabricated Pd—Ag (palladium-silver) nanowires—each wire of the series having a different Ag to Pd ratio—with nanobreakjunctions in them and wherein the nanowires have predefined dimensions and orientation. When the nanowires are exposed to H2, their lattace swells when the H2 concentration reaches a threshold value (unique to that particular ratio of Pd to Ag). This causes the nanobreakjunctions to close leading to a 6-8 orders of magnitude decrease in the resistance along the length of the wire and providing a sensing mechanism for a range of hydrogen concentrations.
    Type: Application
    Filed: July 14, 2006
    Publication date: April 3, 2008
    Applicant: Nano-Proprietary, Inc.
    Inventors: Greg Monty, Kwok Ng, Mohshi Yang
  • Patent number: 7335526
    Abstract: A ChemFET Sensing system is Described.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: February 26, 2008
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Kevin F Peters, Xiaofeng Yang
  • Publication number: 20080034842
    Abstract: A gas sensor includes a substrate having a plurality of through holes, a pair of electrodes disposed on the substrate, wherein the plurality of through holes are disposed between the pair of electrodes and a plurality of carbon nanotubes covering at least a portion of the plurality of through holes, wherein at least a portion of the plurality of carbon nanotubes is connected with the pair of electrodes.
    Type: Application
    Filed: April 3, 2007
    Publication date: February 14, 2008
    Applicant: SAMSUNG ELECTRONICS CO., LTD
    Inventors: Soo-suk LEE, Sung-ouk JUNG, Hun-joo LEE, In-ho LEE, Kyu-tae YOO, Jae-ho KIM
  • Patent number: 7312095
    Abstract: An electronic system for selectively detecting and identifying a plurality of chemical species, which comprises an array of nanostructure sensing devices, is disclosed. Within the array, there are at least two different selectivities for sensing among the nanostructure sensing devices. Methods for fabricating the electronic system are also disclosed. The methods involve modifying nanostructures within the devices to have different selectivity for sensing chemical species. Modification can involve chemical, electrochemical, and self-limiting point defect reactions. Reactants for these reactions can be supplied using a bath method or a chemical jet method. Methods for using the arrays of nanostructure sensing devices to detect and identify a plurality of chemical species are also provided.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: December 25, 2007
    Assignee: Nanomix, Inc.
    Inventors: Jean-Christophe P. Gabriel, Philip G. Collins, Keith Bradley, George Gruner
  • Patent number: 7267797
    Abstract: A system and method for detecting changes in the refractive index of a fluid in a small test volume. A change in the refractive index can indicate a change in the chemical composition of the fluid. The test volume has a depth comparable to or less than the wavelength of incident light. In one embodiment, an internal surface of the volume is coated with a binding partner selected to bind with a targeted molecule. When the targeted molecule binds to the binding partner, the optical properties of the system change. The refractive index is determined by illuminating the test volume with laser light and measuring transmitted or reflected light.
    Type: Grant
    Filed: November 7, 2001
    Date of Patent: September 11, 2007
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Harold G. Craighead, Jun Kameoka
  • Patent number: 7258838
    Abstract: A solid state nanopore device including two or more materials and a method for fabricating the same. The device includes a solid state insulating membrane having an exposed surface, a conductive material disposed on at least a portion of the exposed surface of the solid state membrane, and a nanopore penetrating an area of the conductive material and at least a portion of the solid state membrane. During fabrication a conductive material is applied on a portion of a solid state membrane surface, and a nanopore of a first diameter is formed. When the surface is exposed to an ion beam, material from the membrane and conductive material flows to reduce the diameter of the nanopore. A method for evaluating a polymer molecule using the solid state nanopore device is also described. The device is contacted with the polymer molecule and the molecule is passed through the nanopore, allowing each monomer of the polymer molecule to be monitored.
    Type: Grant
    Filed: February 14, 2003
    Date of Patent: August 21, 2007
    Assignee: President and Fellows of Harvard College
    Inventors: Jiali Li, Derek M. Stein, Gregor M. Schurmann, Gavin M. King, Jene Golovchenko, Daniel Branton, Michael Aziz
  • Patent number: 7226530
    Abstract: Polymer nanofibers, such as polyaniline nanofibers, with uniform diameters less than 500 nm can be made in bulk quantities through a facile aqueous and organic interfacial polymerization method at ambient conditions. The nanofibers have lengths varying from 500 nm to 10 ?m and form interconnected networks in a thin film. Thin film nanofiber sensors can be made of the polyaniline nanofibers having superior performance in both sensitivity and time response to a variety of gas vapors including, acids, bases, redox active vapors, alcohols and volatile organic chemicals.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: June 5, 2007
    Assignees: The Aerospace Corporation, Regents of the University of California
    Inventors: Bruce H. Weiller, Shabnam Virji, Richard B. Kaner, Jiaxing Huang
  • Patent number: 7141210
    Abstract: A nanocalorimeter array for detecting chemical reactions includes at least one thermal isolation region residing on a substrate. Each thermal isolation region includes at least one thermal equilibration region, within which resides a thermal measurement device connected to detection electronics.
    Type: Grant
    Filed: April 1, 2002
    Date of Patent: November 28, 2006
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Alan G. Bell, Richard H. Bruce, Scott A. Elrod, Eric Peeters, Francisco E. Torres
  • Patent number: 7129554
    Abstract: Electrical devices comprised of nanoscopic wires are described, along with methods of their manufacture and use. The nanoscopic wires can be nanotubes, preferably single-walled carbon nanotubes. They can be arranged in crossbar arrays using chemically patterned surfaces for direction, via chemical vapor deposition. Chemical vapor deposition also can be used to form nanotubes in arrays in the presence of directing electric fields, optionally in combination with self-assembled monolayer patterns. Bistable devices are described.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: October 31, 2006
    Assignee: President & Fellows of Harvard College
    Inventors: Charles M. Lieber, Hongkun Park, Qingqiao Wei, Yi Cui, Wenjie Liang