Patents Examined by Kirsten Jolley
  • Patent number: 9575411
    Abstract: A developing apparatus includes: a substrate holder that hold a substrate horizontally; a developer nozzle that supplies a developer onto the substrate to form a liquid puddle; a turning flow generation mechanism including a rotary member that rotates about an axis perpendicular to the substrate while the rotary member is being in contact with the liquid puddle thereby to generate a turning flow in the liquid puddle of the developer formed on the substrate; and a moving mechanism for moving the turning flow generation mechanism along a surface of the substrate. The line-width uniformity of a pattern can be improved by forming turning flows in a desired region of the substrate and stirring the developer.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: February 21, 2017
    Assignee: Tokyo Electron Limited
    Inventors: Kousuke Yoshihara, Hideharu Kyouda, Koshi Muta, Taro Yamamoto, Yasushi Takiguchi
  • Patent number: 9574290
    Abstract: A method for arranging nanotube elements within nanotube fabric layers and films is disclosed. A directional force is applied over a nanotube fabric layer to render the fabric layer into an ordered network of nanotube elements. That is, a network of nanotube elements drawn together along their sidewalls and substantially oriented in a uniform direction. In some embodiments this directional force is applied by rolling a cylindrical element over the fabric layer. In other embodiments this directional force is applied by passing a rubbing material over the surface of a nanotube fabric layer. In other embodiments this directional force is applied by running a polishing material over the nanotube fabric layer for a predetermined time. Exemplary rolling, rubbing, and polishing apparatuses are also disclosed.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: February 21, 2017
    Assignee: Nantero Inc.
    Inventors: David A. Roberts, Hao-Yu Lin, Thomas R. Bengtson, Thomas Rueckes, Karl Robinson, H. Montgomery Manning, Rahul Sen, Michel Pires Monteiro
  • Patent number: 9568829
    Abstract: A developing method includes: horizontally holding an exposed substrate by a substrate holder; forming a liquid puddle on a part of the substrate, by supplying a developer from a developer nozzle; rotating the substrate; spreading the liquid puddle on a whole surface of the substrate, by moving the developer nozzle such that a supply position of the developer on the rotating substrate is moved in a radial direction of the substrate; bringing, simultaneously with the spreading of the liquid puddle on the whole surface of the substrate, a contact part into contact with the liquid puddle, the contact part being configured to be moved together with the developer nozzle and having a surface opposed to the substrate which is smaller than the surface of the substrate. According to this method, an amount of liquid falling down to the outside of the substrate can be inhibited. In addition, since the rotating speed of the substrate can be decreased, spattering of the developer can be inhibited.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: February 14, 2017
    Assignee: Tokyo Electron Limited
    Inventors: Kousuke Yoshihara, Hideharu Kyouda, Koshi Muta, Taro Yamamoto, Yasushi Takiguchi, Masahiro Fukuda
  • Patent number: 9540525
    Abstract: A graphene oxide-ceramic hybrid coating layer formed from a graphene oxide-ceramic hybrid sol solution that includes graphene oxide (GO) and a ceramic sol and a method of preparing the coating layer are provided. A content of graphene oxide in the graphene oxide-ceramic hybrid coating layer is about 0.002 to about 3.0 wt % based on the total weight of the graphene oxide-ceramic hybrid coating layer.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: January 10, 2017
    Assignees: Hyundai Motor Company, Korea Institute of Ceramic Engineering and Technology
    Inventors: Kwang Il Chang, Chul Kyu Song, Dha Hae Kim, Seung Hun Hur
  • Patent number: 9527773
    Abstract: Disclosed are a graphene-ceramic hybrid coating layer formed from a graphene-ceramic hybrid sol solution including graphene (RGO: reduced graphene oxide) and a ceramic sol, wherein the graphene content in the graphene-ceramic hybrid coating layer is about 0.001 wt % to about 1.8 wt % based on the total weight of the graphene-ceramic hybrid coating layer, and a method for preparing the same.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: December 27, 2016
    Assignees: Hyundai Motor Company, Korea Institute of Ceramic Engineering and Technology
    Inventors: Kwang Il Chang, Chul Kyu Song, Dha Hae Kim, Seung Hun Hur
  • Patent number: 9493672
    Abstract: A coating material for an aluminum substrate for inkjet computer-to-plate and preparation method and use of same. The composition of the coating material is: high polymer 5-40 wt %; nano-sized and/or micro-sized oxide particles 5-30 wt %; organic solvent constituting the remainder. The high polymer is at least one selected from the group consisting of MMA-BMA-MA terpolymer resin, phenolic resin, epoxy resin, polyurethane, polyester, urea-formaldehyde resin, polyvinyl formal, polyvinyl butyral and gum arabic. The preparation method for obtaining the coating material is to mix the ingredients together and stir at room temperature. A spin coating method or a roll coating method is used to coat the coating material onto a clean aluminum substrate having not undergone electrolytic graining and anodic oxidation treatment, and then the substrate is baked, resulting in the required roughness.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: November 15, 2016
    Assignee: Institute of Chemistry, Chinese Academy of Sciences
    Inventors: Yanlin Song, Ming Yang, Haihua Zhou, Lianming Yang, Gang Li
  • Patent number: 9477162
    Abstract: A substrate processing apparatus comprises an indexer block, an anti-reflection film processing block, a resist film processing block, a development processing block, a resist cover film processing block, a resist cover film removal block, a cleaning/drying processing block, and an interface block. An exposure device is arranged adjacent to the interface block in the substrate processing apparatus. The exposure device subjects a substrate to exposure processing by means of an immersion method. In the edge cleaning unit in the cleaning/drying processing block, a brush abuts against an end of the rotating substrate, so that the edge of the substrate before the exposure processing is cleaned. At this time, the position where the substrate is cleaned is corrected.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: October 25, 2016
    Assignee: SCREEN Semiconductor Solutions Co., Ltd.
    Inventors: Koji Kaneyama, Masashi Kanaoka, Tadashi Miyagi, Kazuhito Shigemori, Shuichi Yasuda, Tetsuya Hamada
  • Patent number: 9474163
    Abstract: In some embodiments, a method for integrated circuit fabrication includes removing oxide material from a surface of a substrate, where the surface includes silicon and germanium. Removing the oxide material includes depositing a halogen-containing pre-clean material on a silicon oxide-containing surface and sublimating a portion of the halogen-containing pre-clean material to expose the silicon on the surface. A passivation film is deposited on the exposed silicon. The passivation film may include chlorine. The passivation film may prevent contamination of the silicon surface by chemical species from the later sublimation, which may be at a higher temperature than the earlier sublimation. Subsequently, a remaining portion of the halogen-containing pre-clean material and the passivation film are sublimated. A target material, such as a conductive material, may subsequently be deposited on the substrate surface.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: October 18, 2016
    Assignee: ASM IP HOLDING B.V.
    Inventors: John Tolle, Matthew G. Goodman
  • Patent number: 9375751
    Abstract: A method for manufacturing an inorganic-nano structure composite, a method for manufacturing a cabon nanotube composite by using the same, and a carbon nanotube composite manufactured by the same are provided. The method for manufacturing the inorganic-nano structure composite comprises a step of doping pentavalent elements on the nanostructure; and a step of growing the inorganic material from the doping points of the pentavalent elements by dipping the nanostructure on which the pentavalent elements are doped into a precursor solution of the inorganic material, and according to the present invention the pentavalent elements such as nitrogen are doped on the nanostructure and is utilized as the crystallization point of the inorganic material, instead of forming the separate coating layer to the organic-based nanostructure, or binding the binding group to the surface.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: June 28, 2016
    Assignee: KAIST (Korea Advanced Institute of Science and Technology)
    Inventors: Sang-Ouk Kim, Won-jun Lee, Duck-hyun Lee, Jin-ah Lee
  • Patent number: 9358555
    Abstract: Provided is a fluid dispensing system with a dispense nozzle with a threaded outer surface and a fluid dispensing apparatus with a movable dispenser arm with an opening that includes threaded inner walls that receive the dispense nozzle therein. Also provided is a method for aligning a dispense head in a coating tool. Horizontal alignment is achieved by rotating the dispense nozzle until its tip is in contact with the chuck then laterally adjusting the dispenser arm position so that the tip is positioned over a center of the chuck. Vertical alignment is achieved by rotating the dispense nozzle until an indicia of the dispense nozzle is at the same vertical location as a designated physical feature of the dispenser arm.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: June 7, 2016
    Assignee: WAFERTECH, LLC
    Inventor: Ping Chou Lu
  • Patent number: 9360755
    Abstract: Among other things, one or more techniques and systems for performing a spin coating process associated with a wafer and for controlling thickness of a photoresist during the spin coating process are provided. In particular, a thickening phase is performed during the spin coating process in order to increase a thickness of the photoresist. For example, air temperature of down flow air, flow speed of the down flow air, and heat temperature of heat supplied towards the wafer are increased during the thickening phase. The increase in down flow air and heat increase a vaporization factor of the photoresist, which results in an increase in viscosity and thickness of the photoresist. In this way, the wafer can be rotated at relatively lower speeds, while still attaining a desired thickness. Lowering rotational speed of wafers allows for relatively larger wafers to be stably rotated.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: June 7, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chun-Wei Chang, Chia-Chieh Lin, Chih-Chien Wang, Wang-Pen Mo, Hung-Chang Hsieh
  • Patent number: 9349622
    Abstract: A method of forming a coating, comprises applying a first coating to a substrate having a plurality of topographical features, planarizing a top surface of the first coating, and drying the first coating after planarizing the top surface. The first coating may be applied over the plurality of topographical features, and may be substantially liquid during application. The first coating may optionally be a conformal coating over topographical features of the substrate. The conformal coating may be dried prior to planarizing the top surface of the first coating. A solvent may be applied to the conformal coating, with the top surface of the conformal coating being substantially planar after application of the solvent. The first coating may have a planar surface prior to drying the first coating, and the first coating may be dried without substantial spin-drying by modifying an environment of the first coating.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 24, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Yun Wang, Cheng-Han Wu, Yu-Chung Su, Ching-Yu Chang
  • Patent number: 9328268
    Abstract: A continuous process for preparing a pressure sensitive adhesive using a planetary roller extruder is described. The continuous process includes introducing at least one non-thermoplastic elastomer into a planetary roller extruder and initially compounding the non-thermoplastic elastomer in the planetary roller extruder to form an initially masticated non-thermoplastic elastomer. Then, a solid raw material, a liquid material, or both are introduced into the initially masticated non-thermoplastic elastomer in the planetary roller extruder, and subsequent compounding of the initially masticated non-thermoplastic elastomer with these additional components occurs to form an adhesive composition.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: May 3, 2016
    Assignee: INTERTAPE POLYMER CORP.
    Inventors: John Kinch Tynan, Jr., Richard Walter St. Coeur, David Michael Kovach, Thomas Lombardo
  • Patent number: 9278373
    Abstract: In one embodiment, a spin coating apparatus includes a coating liquid feeding module to drop a coating liquid onto a substrate, and a motor to rotate the substrate. The module drops a first drop amount of the coating liquid onto the substrate at a first discharge rate, while the motor rotates the substrate at a first number of rotations. The module drops a second drop amount of the coating liquid onto the substrate at a second discharge rate larger than the first discharge rate, while the motor rotates the substrate at a second number of rotations smaller than the first number of rotations, after the first drop amount of the coating liquid is dropped. The module discharges the coating liquid onto the substrate at a third discharge rate smaller than the second discharge rate, after the coating liquid is discharged onto the substrate at the second discharge rate.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: March 8, 2016
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Keisuke Nakazawa
  • Patent number: 9272391
    Abstract: An article of footwear is made by (a) providing a component having a contaminant on a receiving area of a surface; (b) blast cleaning the receiving area of the surface by propelling an abrasive alkali, alkaline earth, or ammonium compound in a pressurized gas stream against the receiving area; (c) applying a pressurized gas stream free of the abrasive compound, liquid water, and organic liquid to the receiving area to remove any residual abrasive compound from the receiving area of the surface to produce a cleaned receiving area; (d) applying a layer of material to the cleaned receiving area, wherein the material is selected from the group consisting of adhesives and coating compositions; and (e) incorporating the component into an article of footwear.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: March 1, 2016
    Assignee: NIKE, Inc.
    Inventor: Geun Rok Park
  • Patent number: 9272306
    Abstract: Provided are methods and systems for distributing coating materials using simultaneous vibration and rotation. Inertial forces generated during vibration and centrifugal forces generated during rotation redistribute the coating materials previously deposited on the surface resulting in uniform and/or conformal layers. The coated surfaces may have various shapes and degrees of roughness and may be referred to as complex surfaces. An initial layer of the coating material may be deposited on a complex surface of the part using dipping, spraying, spin coating, or other like techniques. The coating material is redistributed by simultaneous rotation and vibration of the part using specifically selected process conditions, such as orientation of vibrational and rotational axes relative to the part, rotational speeds, and vibrational frequencies and amplitudes.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: March 1, 2016
    Assignee: Advenira Enterprises, Inc.
    Inventors: Elmira Ryabova, Valentin Ryabov
  • Patent number: 9271498
    Abstract: Methods for making antimicrobial coating materials are described. Antimicrobial materials and antimicrobial material precursors are formed from hexahydrotriazine and/or a hemiaminal material and a non-fouling material and adhesive material may be incorporated into the antimicrobial materials and antimicrobial material precursors. The hexahydrotriazine and/or hemiaminal material may be made from a diamine and an aldehyde. Metal ions are also incorporated into the antimicrobial material precursors to form an antimicrobial material.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: March 1, 2016
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Jeannette M. Garcia, James L. Hedrick, Rudy J. Wojtecki
  • Patent number: 9259758
    Abstract: A substrate treatment method is provided, which includes: a liquid film forming step of forming a liquid film of a treatment liquid on a front surface of a substrate; a hydrophobization liquid supplying step of supplying a hydrophobization liquid to a center portion of the front surface of the substrate for hydrophobizing the front surface of the substrate, while rotating the substrate; an inactivation suppressing step of suppressing inactivation of the supplied hydrophobization liquid on a peripheral edge portion of the front surface of the substrate simultaneously with the hydrophobization liquid supplying step; and a drying step of drying the substrate to which the hydrophobization liquid has been supplied.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: February 16, 2016
    Assignee: SCREEN HOLDINGS CO., LTD.
    Inventors: Tetsuya Emoto, Manabu Okutani
  • Patent number: 9230834
    Abstract: A substrate treating method for treating substrates with a substrate treating apparatus having an indexer section, a treating section and an interface section includes performing resist film forming treatment in parallel on a plurality of stories provided in the treating section and performing developing treatment in parallel on a plurality of stories provided in the treating section.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: January 5, 2016
    Assignee: SCREEN Semiconductor Solutions Co., Ltd.
    Inventors: Yoshiteru Fukutomi, Tsuyoshi Mitsuhashi, Hiroyuki Ogura, Kenya Morinishi, Yasuo Kawamatsu, Hiromichi Nagashima
  • Patent number: 9187646
    Abstract: A mechanical compression method can be used to tune semiconductor nanoparticle lattice structure and synthesize new semiconductor nanostructures including nanorods, nanowires, nanosheets, and other three-dimensional interconnected structures. II-VI or IV-VI compound semiconductor nanoparticle assemblies can be used as starting materials, including CdSe, CdTe, ZnSe, ZnS, PbSe, and PbS.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: November 17, 2015
    Assignee: Sandia Corporation
    Inventors: Hongyou Fan, Binsong Li