Patents Examined by William H. Beisner
  • Patent number: 11572536
    Abstract: Disclosed is a well insert for cell culture, including: a membrane support having an upper end and a lower end, the upper end being adapted to engage a well of a microplate so as to suspend the well insert therein; and a permeable membrane for supporting a tissue culture, the permeable membrane being attached at the lower end of the membrane support and sealed thereto, the permeable membrane being of brittle material. The membrane support is overmolded or fastened on to the permeable membrane so as be sealed thereto.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: February 7, 2023
    Assignee: SIMPLINEXT SA
    Inventors: Silvia Angeloni Suter, Kaspar Suter, Eric Marguet, Sylvain Bergerat, Charlotte Voutat
  • Patent number: 11570985
    Abstract: The invention provides, in various embodiments, systems, devices and methods relating to ex-vivo organ care. In certain embodiments, the invention relates to maintaining an organ ex-vivo at near-physiologic conditions. The present application describes a method for using lactate measurement in the arterial and the venous blood lines of the Organ Care System Heart perfusion device to evaluate the: 1) The overall perfusion status of an isolated heart and 2) The metabolic status of an isolated heart and 3) the overall vascular patency of an isolated donor heart. This aspect of the present invention uses the property of myocardial cell's unique ability to produce/generate lactate when they are starved for oxygen and metabolize/utilize lactate for energy production when they are well perfused with oxygen.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: February 7, 2023
    Assignee: TRANSMEDICS, INC.
    Inventors: Waleed H. Hassanein, Tamer I. Khayal, Ahmed Elbetanony, Paul Lezberg, Giovanni Cecere, Dennis Sousa, Elizabeth Hansen Bulger
  • Patent number: 11566980
    Abstract: Portable real-time airborne fungi acquiring and detecting equipment and method are provided, the equipment includes a light source device, a manual constant-flow air pump, an impactor, an airborne fungi enrichment and dyeing device, and a fluorescence data collecting and processing device sequentially connected. The fluorescence detection technology is combined with the microparticle separation technology to develop the portable airborne fungi real-time acquiring and detecting equipment. This equipment improves the complex and extensive collection methods in conventional airborne fungi detection and the demand limitation of independent detection equipment, and realizes the real-time collection and quantification of airborne fungi concentration. Moreover, the equipment has the advantages of small volume, low costs, easy operation and is easy to be prompted.
    Type: Grant
    Filed: March 24, 2022
    Date of Patent: January 31, 2023
    Assignee: JIANGSU UNIVERSITY
    Inventors: Shouqi Yuan, Pan Wang, Ning Yang, Jiawei Shen
  • Patent number: 11560539
    Abstract: A reversible liquid filtration system for cell culture perfusion comprises: a bioreactor vessel (B4), for storing the cell culture (L4); a perfusion pump (P7), comprising a reciprocable element (P71) which is movable in opposing first and second pumping directions (dF, dR); a filter (F4); and first and second bi-directional valves (BV1, BV2), each selectively controllable between open and closed positions. The perfusion pump (P7), the filter (F4), and the first and second bi-directional valves (BV1, BV2), together comprise a fluidic circuit in communication with the bioreactor vessel (B4). The bi-directional valves (BV1, BV2) are controllable to open and close in co-ordination with the reciprocating perfusion pump (P7), in order to enable both a two-way filtering flow around the fluidic circuit and also an alternating filtering flow between the bioreactor vessel (B4) and the perfusion pump (P7).
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: January 24, 2023
    Inventors: Richard Wales, Andrew Tait, Matthew Paley
  • Patent number: 11559811
    Abstract: A bioprocess system and a method for incubating, growing and harvesting cell cultures is described. Also disclosed is a bioprocess container that can be used with the system. In one aspect of the present disclosure, the bioprocess system includes bioprocess tubes and cell culture tubes having particular dimensions and being made from specific materials that allow the tubes to be welded together while preventing open connections and/or ruptures. In this manner, bioprocess containers can be connected and disconnected from a cell culture apparatus without having to perform the manipulation within a closed environment and without associated monitoring.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: January 24, 2023
    Assignee: Lonza Ltd.
    Inventors: Jason Bishop, Steven Roberts
  • Patent number: 11554373
    Abstract: A pumpless microfluidic system is disclosed that can be used to mimic the interaction of organ systems with the immune system. Also disclosed is a method for mimicking an immune system, comprising culturing a plurality of organ cells and at least one population of immune cells in the disclosed pumpless microfluidic system under physiological conditions. The method can further comprise activating an immune reaction in the pumpless microfluidic system, continuing the culture for a defined period, collecting a sample of culture medium from the system, and assaying the sample for one or more indicators of an immune response.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: January 17, 2023
    Assignees: University of Central Florida Research Foundation, Inc., Hesperos, Inc.
    Inventors: James Hickman, Alisha Colon, Christopher McAleer, Trevor Sasserath, John Rumsey, Daniel Elbrecht
  • Patent number: 11555170
    Abstract: A photobioreactor for cultivation and/or propagation of a photosynthetic organism and associated systems/methods are disclosed herewith. The photobioreactor includes (1) a substantially spherical vessel having a wall defining an interior vessel volume; (2) a water-submersible system for converting electrical energy into electromagnetic radiation; (3) a temperature management system for circulating heat dispersal fluid into and out of the water-submersible system; and (4) a photobioreactor control system comprising a processor and a controller.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: January 17, 2023
    Assignee: ForeLight, Inc
    Inventors: Adam Flynn, Julie Moffitt
  • Patent number: 11549090
    Abstract: An inverted conical bioreactor is provided for growing cells or microorganisms. The bioreactor has an internal space and a perforated barrier within the vessel, through which a liquid may flow, where cells or microorganisms cannot pass through the perforated barrier. The perforated barrier divides the internal space of the bioreactor into a first chamber and a second chamber. Cells are grown within the second chamber and can be perfused by re-circulating the liquid, for example a growth medium, through the bioreactor. Various inlet ports and outlet ports allow controlling the parameters of flow of the growth medium.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: January 10, 2023
    Assignee: ADVA BIOTECHNOLOGY LTD.
    Inventor: Ohad Karnieli
  • Patent number: 11548007
    Abstract: A thermal cycler system for use with a sample holder configured to receive a plurality of samples includes a sample block having an upstanding peripheral side wall and being configured to receive the sample holder and an adaptor having an upstanding peripheral side wall configured to be positioned about the peripheral side wall of the sample block. When the peripheral side wall of the adaptor is positioned about the peripheral side wall of the sample block and the sample holder is received in the sample block, the peripheral side wall of the adaptor extends in an upward direction toward the sample holder.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: January 10, 2023
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Zeqi Tan, Wuh Ken Loh, Siew Yin Lee, Kuan Moon (Bernard) Boo
  • Patent number: 11549089
    Abstract: A transfection device suitable for delivery of various macrostructures (e.g., mitochondria, bacteria, liposomes) is described and uses mechanical force to thereby induce active endocytosis in a target cell. Contemplated devices are able to achieve high throughput of transfected cells that remain viable and are capable of producing colonies.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: January 10, 2023
    Assignee: NANOCAV, LLC
    Inventor: Ting Wu
  • Patent number: 11533907
    Abstract: A stem cell manufacturing system for manufacturing stem cells from somatic cells includes: one or more closed production device(s) configured to produce stem cells from somatic cells; one or more drive device(s) configured to be connected with the production device(s) and drive the production device(s) in such a manner as to maintain the production device(s) in an environment suitable for producing stem cells; one or more cryopreservation device(s) configured to cryopreserve the produced stem cells; a first memory device configured to store whether or not somatic cells have been introduced to the production device(s), as a first state; a second memory device configured to store whether or not the production device(s) is/are connected with the drive device(s), as a second state; and a third memory device configured to store whether or not the produced stem cells can be placed in the cryopreservation device(s), as a third state.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: December 27, 2022
    Assignees: FANUC CORPORATION, I PEACE, INC.
    Inventors: Koji Tanabe, Kiyonori Inaba, Masaru Oda
  • Patent number: 11528903
    Abstract: Disclosed is an ischaemia-free organ perfusion device and perfusion method. The perfusion device perfuses an isolated organ at normal temperature during whole transplantation, and comprises a first container, a second container, a first flow path, a second flow path, a third flow path and a fourth flow path. The perfusion device and the perfusion method are capable of maintaining the blood flow of the isolated organ during whole transplantation without interruption by machine perfusion, recovering the blood of the organ, effectively avoiding the interruption of blood supply for the organ during the whole transplantation, and improving the prognosis of organ transplantation.
    Type: Grant
    Filed: January 13, 2022
    Date of Patent: December 20, 2022
    Assignee: THE FIRST AFFILIATED HOSPITAL, SUN YAT-SEN UNIVERSITY
    Inventors: Xiaoshun He, Qiang Zhao, Jinbo Huang, Honghui Chen, Zhiyong Guo
  • Patent number: 11525112
    Abstract: Disclosed is a cell culture system comprising a first cell culture bioreactor system (10) for culturing cells to a predetermined cell density or quantity, the system including a bioreactor volume (20), a process controller (30), process control devices (32) which provide inputs (16) for the culture volume and culture parameter measurement devices (14), wherein the process controller is operable according to plural control program steps to control the process devices to provide inputs for a suitable cell culture environment in the bioreactor volume, and is further operable according to control program steps modified by feedback values from the culture parameter measurement devices, and comprises a memory (36) operable to record data indicative of the progress of the control program steps.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: December 13, 2022
    Assignee: Global Life Sciences Solutions USA LLC
    Inventors: Manoj Ramakrishna, Anoop Bhargav, Umesh Pai
  • Patent number: 11512272
    Abstract: An active solid state fermentation bioreactor for producing gases, liquid(s) or solids from gaseous or gaseous and liquid starting materials and a fermentation process using the reactor are disclosed, The bioreactor includes three major phases; a solid phase including the porous solid support, a liquid phase comprising liquid, and a gaseous phase. The solid phase includes a porous solid support, in which at least 20% of the pore volumes have a size resulting in a liquid suction of about 0.01 to about 0.1 bars if these pores are filled with liquid, the porous solid support is inoculated with desired micro-organisms, the volume of the gaseous phase is 20% to 60% of the volume of the bioreactor, and the liquid phase is at least 20% of the reactor volume, The unsaturated capillary conductivity of filling/packing solid material of the bioreactor is at least 0.1 cm/ h.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: November 29, 2022
    Assignee: Q POWER OY
    Inventors: Anni Alitalo, Marko Niskanen, Erkki Aura
  • Patent number: 11504709
    Abstract: A cell capture, disruption, and extraction method includes a introducing a plurality of abrasives in a disruption chamber, which can include diamond powder, variably and multi dimensionally disbursed therein, and a pestle positioned in the disruption chamber. The method includes agitating the abrasives by moving the disruption chamber and/or pestle, agitation of the abrasives tearing cell structure in the solution to access its contents. A binding column or size exclusion column can be positioned downstream of the disruption chamber. Cell solution can first be introduced in the disruption chamber, the abrasives capturing the cells and allowing therethrough and purging the waste content, then breaking the cell content. The lysate can then bind to an extraction matrix downstream of the disruption chamber or it can be mixed in with the abrasives.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: November 22, 2022
    Inventor: Kianoosh Peyvan
  • Patent number: 11505771
    Abstract: The present disclosure provides methods and materials for the cultivation and/or propagation of a photosynthetic organism. Such methods may comprise the use of a lamp assembly that comprises a plurality of circuit boards, each comprising at least three edges, arranged in a substantially spherical shape defining an interior lamp assembly volume, wherein the plurality of circuit boards comprise a first planar surface in contact with the interior lamp assembly volume and an opposing second planar surface comprising light emitting diodes (LEDs); and a barrier that surrounds the plurality of circuit boards forming the substantially spherical shape.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: November 22, 2022
    Assignee: ForeLight, Inc.
    Inventors: Adam Flynn, Jeff Kantarek
  • Patent number: 11499133
    Abstract: The present invention provides a cell treatment apparatus capable of treating cells in a cell culture vessel. The cell treatment apparatus 100 according to the present invention includes a first region 1, a second region 3, and a third region 5. The first region 1 and the second region 3 are placed in succession. The first region 1 is a cell treatment chamber for treating cells. The cell treatment chamber can be closed from the outside of the cell treatment chamber and includes a culture vessel placement portion for placing a cell culture vessel. The second region 3 includes: a laser irradiation device capable of irradiating the cell culture vessel placed in the culture vessel placement portion with a laser; and a spot diameter adjustment device that adjusts a spot diameter formed in a portion to be irradiated with the laser in an object to be irradiated.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: November 15, 2022
    Assignee: KATAOKA CORPORATION
    Inventors: Junichi Matsumoto, Shoichi Honda
  • Patent number: 11499129
    Abstract: A cell treatment apparatus capable of treating cells in a cell culture vessel. The cell treatment apparatus (100) according to the present invention includes a first region (1), a second region (3), and a third region (5). The first region (1) and the second region (3) are placed in succession. The first region (1) is a cell treatment chamber for treating cells. The cell treatment chamber can be closed from the outside of the cell treatment chamber and includes a culture vessel placement portion for placing a cell culture vessel. The second region (3) includes a laser irradiation device capable of irradiating the cell culture vessel placed in the culture vessel placement portion with a laser. The third region (5) includes a control device that controls at least one device in the cell treatment apparatus (100) and a power supply device (52) that supplies electric power to at least one device in the cell treatment apparatus (100).
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: November 15, 2022
    Assignee: KATAOKA CORPORATION
    Inventors: Junichi Matsumoto, Norihiro Yamagishi
  • Patent number: 11491483
    Abstract: Devices for high throughput cell electroporation include a trapping component that at least partially defines an upper boundary of a microfluidic chamber. A cell trap array is patterned on the underside of the trapping component, and a channeling component is positioned beneath the trapping component. The channeling component includes a vertically oriented nanochannel array. The trapping component and the channeling component are positioned such that a given nanochannels is positioned beneath a cell trap. During use, fluid flow holds trapped cells in secure contact with the nanochannels beneath the cell trap. The device further includes upper and lower electrode layers for generating an electric field to electroporate trapped cells via the nanochannel array. A reservoir positioned beneath the channeling component can be filled transfection reagent solution. During electroporation, the transfection reagent solution travels through the nanochannel array during to transfect the trapped cells.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: November 8, 2022
    Assignee: Ohio State Innovation Foundation
    Inventors: L. James Lee, Junfeng Shi
  • Patent number: 11485943
    Abstract: Aspects of the disclosure relate to rotating bioreactors and articles and methods that are useful for adapting a rotating bioreactor for use with tissues or scaffolds of different sizes. In some embodiments, bioreactors comprising a reservoir and an arbor assembly are provided herein, in which the arbor assembly comprises a rotatable support to which a tissue or tissue scaffold can be attached.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: November 1, 2022
    Assignee: Biostage, Inc.
    Inventor: Herbert Hedberg