Measuring, Analyzing Or Testing Patents (Class 204/298.03)
  • Publication number: 20130313107
    Abstract: When a magnetron is scanned about the back of a target in a selected complex path having radial components, the erosion profile has a form depending upon the selection of paths. A radial erosion rate profile for a given magnetron is measured. Periodically during scanning, an erosion profile is calculated from the measured erosion rate profile, the time the magnetron spends at different radii, and the target power. The calculated erosion profile may be used to indicate when erosion has become excessive at any location prompting target replacement or to adjust the height of the magnetron above the target for repeated scans. In another aspect of the invention, the magnetron height is dynamically adjusted during a scan to compensate for erosion. The compensation may be based on the calculated erosion profile or on feedback control of the present value of the target voltage for a constant-power target supply.
    Type: Application
    Filed: May 20, 2013
    Publication date: November 28, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Keith A. Miller, Daniel C. Lubben
  • Patent number: 8585877
    Abstract: For providing control of two-step or a multi-step deposition process, a method and a corresponding deposition system is provided comprising providing a deposition process having at least two sub-processes employing different sets of process parameters, wherein each set of process parameters comprises at least one process parameter. The method comprises controllably generating an actual value for at least one first process parameter by taking into account at least one previous value of the respective first process parameter, wherein each first process parameter is a process parameter of said at least two sets of process parameters.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: November 19, 2013
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Roland Jaeger, Frank Wagenbreth, Frank Koschinsky
  • Publication number: 20130284593
    Abstract: An ion beam machining and observation method relevant to a technique of cross sectional observation of an electronic component, through which a sample is machined by using an ion beam and a charged particle beam processor capable of reducing the time it takes to fill up a processed hole with a high degree of flatness at the filled area. The observation device is capable of switching the kind of gas ion beam used for machining a sample with the kind of a gas ion beam used for observing the sample. To implement the switch between the kind of a gas ion beam used for sample machining and the kind of a gas ion beam used for sample observation, at least two gas introduction systems are used, each system having a gas cylinder, a gas tube, a gas volume control valve, and a stop valve.
    Type: Application
    Filed: June 25, 2013
    Publication date: October 31, 2013
    Inventors: Hiroyasu SHICHI, Satoshi TOMIMATSU, Kaoru UMEMURA, Noriyuki KANEOKA, Koji ISHIGURO
  • Publication number: 20130277213
    Abstract: The present invention provides a means capable of determining the surface state of the target to execute accurate and quick cleaning of necessary part. The means includes: a magnet unit capable of forming a magnetic field on the surface of a target; a rotary system capable of driving the magnet unit of change the magnetic field pattern; and an ammeter configured to measure target current when the magnetic field is formed by the magnet unit and discharge voltage is applied to a target electrode to which the target is attached. The position of the magnet unit is variously changed by the rotary system, and the target current is measured at each position and compared with a reference value. It is then determined whether cleaning is necessary at each position, so that cleaning can be performed only for necessary part.
    Type: Application
    Filed: June 20, 2013
    Publication date: October 24, 2013
    Inventor: Yohsuke SHIBUYA
  • Patent number: 8524099
    Abstract: Methods for processing events occurring in a process chamber are provided. In one method, an operation includes carrying gas and receiving an optical signal from the process chamber to an analysis tool that operates in response to the optical signal having a signal-to-noise ratio (SNR) for process analysis. And, dividing the carried gas and optical signal into a plurality of separate gas and optical signals between the process chamber and the analysis tool. The dividing is configured through separate apertures so that the apertures collectively maintain the SNR of the optical signal received at the tool. Methods provide a septum in a second bore dividing the second bore into apertures configured to reduce etching of and deposition on the optical access window and to maintain the desired SNR at the diagnostic end point.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: September 3, 2013
    Assignee: Lam Research Corporation
    Inventors: Jeff A. Bogart, Leonard Sharpless, Harmeet Singh
  • Publication number: 20130220802
    Abstract: An apparatus for generating sputtering of a target to produce a coating on a substrate is provided. The apparatus comprises a magnetron including a cathode and an anode. A power supply is operably connected to the magnetron and at least one capacitor is operably connected to the power supply. A first switch is also provided. The first switch operably connects the power supply to the magnetron to charge the magnetron and the first switch is configured to charge the magnetron according to a first pulse. An electrical bias device is operably connected to the substrate and configured to apply a substrate bias.
    Type: Application
    Filed: April 10, 2013
    Publication date: August 29, 2013
    Applicant: OC OERLIKON BALZERS AG
    Inventor: OC OERLIKON BALZERS AG
  • Patent number: 8470142
    Abstract: A sputtering apparatus for depositing a target material on a substrate includes a chamber, a target in the chamber to provide the target material, a carrier to carry the substrate in the chamber to face the target, and a plurality of masks arranged along sides of the carrier and being movable back and forth with respect to the carrier.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: June 25, 2013
    Assignees: LG Display Co., Ltd., AVACO Co., Ltd., LG Electronics, Inc.
    Inventors: Sung Eun Kim, Tae Hyun Lim, Hwan Kyu Yoo, Kwang Jong Yoo, Yang Sik Moon, Byeong Cheol An
  • Publication number: 20130105298
    Abstract: A sputtering apparatus according to one embodiment of the present invention includes a substrate holder, a cathode unit arranged at a position diagonally opposite to the substrate holder, a position sensor for detecting a rotational position of the substrate, and a holder rotation controller for adjusting a rotation speed of the substrate according to the detected rotational position. The holder rotation controller controls the rotation speed so that the rotation speed of the substrate when the cathode unit is located on a side in a first direction as an extending direction of a process target surface of the relief structure is lower than the rotation speed of the substrate when the cathode unit is located on a side in a second direction which is perpendicular to the first direction along the rotation of the substrate.
    Type: Application
    Filed: December 11, 2012
    Publication date: May 2, 2013
    Applicant: CANON ANELVA CORPORATION
    Inventor: Canon Anelva Corporation
  • Publication number: 20130081942
    Abstract: A thin film formation method is provided, by which needless film formation due to trial film formation is omitted and film formation efficiency can be improved. This invention is a method for sputtering targets to form a film A having an intended film thickness of T1 as the first thin film on a substrate and monitor substrate held and rotated by a rotation drum and, subsequently, furthermore sputtering the targets used in forming the film A to form a film C having an intended film thickness of T3 as the second thin film, which is another thin film having the same composition as the film A; comprising film thickness monitoring steps S4 and S5, a stopping step S7, an actual time acquisition step S8, an actual rate calculating step S9 and a necessary time calculating step S24.
    Type: Application
    Filed: June 13, 2011
    Publication date: April 4, 2013
    Applicant: SHINCRON CO., LTD.
    Inventors: Yohei Hinata, Kyokuyo Sai, Yoshiyuki Otaki, Ichiro Shiono, Yousong Jiang
  • Patent number: 8410427
    Abstract: The present teachings provide a method for manufacturing a semiconductor device including a semiconductor substrate and a lower surface electrode in which an aluminum containing layer, a titanium layer, a nickel layer, and a nickel oxidation-prevention layer are laminated in order from a semiconductor substrate side, wherein the titanium layer of the lower electrode is formed by sputtering in an atmosphere of a partial pressure of oxygen being equal to or less than 5×10?6 Pa.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: April 2, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yasutaka Takeuchi
  • Patent number: 8357266
    Abstract: A method and system for conditioning a vapor deposition target is described. In one illustrative embodiment, a vapor deposition system is operated in which a vapor deposition target is used, the occurrence of electrical arcs in the vapor deposition system is detected, and the vapor deposition target is conditioned by adjusting an output current of a power supply that powers the vapor deposition system and adjusting an interval during which energy is delivered to each arc to deliver substantially the same energy to each arc. In some embodiments, the energy delivered to each arc is approximately equal to the maximum energy that the vapor deposition target can withstand without being damaged. The described method and system significantly reduces the time required to remove impurities from a target and does not require the venting of the vacuum chamber or the removal of the target from the chamber.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: January 22, 2013
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Milan Ilic, Robert B. Huff, George W. McDonough
  • Publication number: 20130001075
    Abstract: A sputtering apparatus includes: a vacuum chamber in which a target is to be disposed; a power supply to input power to the target; gas introduction device; exhaust device; and substrate holding device to hold a substrate to be processed. The substrate holding device includes: a chuck main body having positive and negative electrodes; a chuck plate having a rib portion capable of bringing a peripheral edge portion of the substrate into surface contact with the rib portion; and a multiplicity of supporting portions provided upright and arranged at predetermined intervals in an interior space surrounded by the rib portion; and a DC power supply to apply a direct voltage between the two electrodes. The sputtering apparatus suppresses a variation in film thickness among substrates.
    Type: Application
    Filed: March 16, 2011
    Publication date: January 3, 2013
    Inventors: Naoki Morimoto, Masahiko Ishida
  • Publication number: 20120325651
    Abstract: It is an object of this invention to prevent a deposited film from adhering to an exhaust chamber so as to suppress the generation of particles. A sputtering apparatus (1) includes a shutter accommodation unit (23) which is detachably placed in an exhaust chamber (8) and accommodates a shutter (19) in a retracted state, and shield members (40a, 40b) which at least partially cover the exhaust port of the exhaust chamber (8), and are at least partially formed around an opening portion of the shutter accommodation unit (23).
    Type: Application
    Filed: September 7, 2012
    Publication date: December 27, 2012
    Applicant: CANON ANELVA CORPORATION
    Inventors: Nobuo YAMAGUCHI, Kimiko MASHIMO, Shinya NAGASAWA
  • Patent number: 8323471
    Abstract: A method of automatic deposition profile targeting for electrochemically depositing copper with a position-dependent controllable plating tool including the steps of depositing copper on a patterned product wafer, measuring an actual thickness profile of the deposited copper and generating respective measurement data, feeding the measurement data to an advanced process control (APC) model and calculating individual corrections for plating parameters in the position-dependent controllable plating tool.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: December 4, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Thomas Ortleb, Markus Nopper, Dirk Wollstein
  • Publication number: 20120241310
    Abstract: An apparatus for coating a substrate has a vacuum chamber designed to receive the substrate and at least one sputtering target to be ablated during operation of the apparatus by particle bombardment. At least one window is arranged in the wall of the vacuum chamber. A device for determining the wear of the sputtering target, by optically measuring the distance between at least one predefinable point outside the vacuum chamber and at least one predefinable point on the surface of the sputtering target, and including an evaluation device correcting for any parallax offset and/or a geometric distortion.
    Type: Application
    Filed: November 19, 2010
    Publication date: September 27, 2012
    Inventors: Ulrich Schöpka, Richard Öchsner, Markus Pfeffer, Wolfram Maass, Jürgen Langer, Berthold Ocker
  • Publication number: 20120228123
    Abstract: Disclosed are an apparatus and a method for plasma ion implantation of a solid element, which enable plasma ion implantation of a solid element. According to the apparatus and method, a sample is placed on a sample stage in a vacuum chamber, and the inside of the vacuum chamber is maintained as a vacuum state. And, gas is supplied in the vacuum chamber, a first pulsed DC power is applied to a magnetron sputtering source so as to generate plasma ions of a solid element. The plasma ions of a solid element sputtered from the source are implanted on the surface of the sample. The first power is a pulse DC power capable of applying a high power the moment a pulse is applied while maintaining low average power. And, simultaneously with the applying of the first pulse power, a second power may be supplied to the sample stage, which is a high negative voltage pulse accelerating plasma ions of a solid element to the sample and synchronized to the pulse DC power for magnetron sputtering source.
    Type: Application
    Filed: March 10, 2011
    Publication date: September 13, 2012
    Applicant: Korea Institute of Science and Technology
    Inventors: Seung-Hee HAN, Ji-Young Byun, Hyun-Kwang Seok, Jun-Hyun Han, Yu-Chan Kim, Sung-Bai Lee, Jin-Young Choi
  • Patent number: 8262869
    Abstract: Work piece processing is performed by pulsed discharges between an anode (2) and a magnetron sputtering cathode (1) in solid-gas plasmas using a chamber (2) containing the work piece (7). A system (12) maintains a vacuum in the chamber and another system (14) provides sputtering and reactive gases. The pulses are produced in a plasma pulser circuit including the anode and the cathode, the discharges creating gas and partially ionized solid plasma blobs (3) moving or spreading from a region at a surface of the cathode towards the work piece and the anode. A potential is applied to the work piece so that a pulsed current comprising biasing pulses arises between the second electrodes. In particular biasing discharges are produced between the anode and the work piece when said plasma blobs have spread to regions at the anode and at the work piece so that the pulsed current is the current of these biasing discharges.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: September 11, 2012
    Assignee: Chemfilt Ionsputtering Aktiebolag
    Inventor: Vladimir Kouznetsov
  • Publication number: 20120138452
    Abstract: A method and apparatus for achieving very high deposition rate magnetron sputtering wherein the surface of a target and especially the race track zone area of the target, in one embodiment may be heated to such a degree that the target material approaches the melting point and sublimation sets in. Controlled heating is achieved primarily through the monitoring of the temperature of the target material and with the aid of a processor subsequently controlling the target temperature by adjustment of the power being inputted to the target. This controlled heating to the sublimation point is particularly effecting in high deposition rate metal coating of parts when used in conjunction with HIPIMS deposition.
    Type: Application
    Filed: April 13, 2010
    Publication date: June 7, 2012
    Applicant: The Regents of the University of California
    Inventor: Andre Anders
  • Publication number: 20120132518
    Abstract: When a magnetron is scanned about the back of a target in a selected complex path having radial components, the erosion profile has a form depending upon the selection of paths. A radial erosion rate profile for a given magnetron is measured. Periodically during scanning, an erosion profile is calculated from the measured erosion rate profile, the time the magnetron spends at different radii, and the target power. The calculated erosion profile may be used to indicate when erosion has become excessive at any location prompting target replacement or to adjust the height of the magnetron above the target for repeated scans. In another aspect of the invention, the magnetron height is dynamically adjusted during a scan to compensate for erosion. The compensation may be based on the calculated erosion profile or on feedback control of the present value of the target voltage for a constant-power target supply.
    Type: Application
    Filed: February 7, 2012
    Publication date: May 31, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Keith A. Miller, Daniel C. Lubben
  • Patent number: 8187432
    Abstract: An anodizing apparatus for forming an anodized film on the surface of a workpiece (11) made of aluminum or aluminum alloy includes a treatment tank (1) for containing an electrolytic solution, a cathode plate (2) disposed in the treatment tank, a supporting means (3) for supporting the workpiece so as to be immersed in the electrolytic solution, and a power supply (4) for continuously or intermittently applying a short-period bipolar or unipolar pulse voltage or an alternating voltage to between the workpiece and the cathode plate. The cathode plate (2) is arranged in a crosswise direction with respect to the workpiece (11).
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: May 29, 2012
    Assignee: Suzuki Motor Corporation
    Inventors: Tomoharu Yamamoto, Hiroomi Tanaka
  • Publication number: 20120103800
    Abstract: A control system and method for controlling two motors determining the azimuthal and circumferential position of a magnetron rotating about the central axis of the sputter chamber in back of its target sputtering and capable of a nearly arbitrary scan path, e.g., with a planetary gear mechanism. A system controller periodically sends commands to the motion controller which closely controls the motors. Each command includes a command ticket, which may be one of several values. The motion controller accepts only commands having a command ticket of a different value from the immediately preceding command. One command selects a scan profile stored in the motion controller, which calculates motor signals from the selected profile. Another command instructs a dynamic homing command which interrogates sensors of the position of two rotating arms to determine if the arms in the expected positions. If not, the arms are rehomed.
    Type: Application
    Filed: January 10, 2012
    Publication date: May 3, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Yu Chang, William Kuang, Ronald D. DeDore, Jitendra R. Bhimjiyani, Wesley W. Zhang
  • Patent number: 8163140
    Abstract: The present invention provides a method for reactive sputtering in which a reactive sputtering apparatus including a sputtering vaporization source 2 provided with a metal target disposed in a vacuum chamber 1, a sputtering power source 4 to drive the sputtering vaporization source 2, and an introduction mechanism 5 to introduce an inert gas for sputtering and a reaction gas for forming a compound with sputtered metal into the vacuum chamber 1 is used, and reactive sputtering film formation is performed on a substrate 3 disposed in the above-described vacuum chamber, wherein the method includes the steps of performing constant-voltage control to control the voltage of the above-described sputtering power source 4 at a target voltage Vs and, in addition, performing target voltage control at a control speed lower than the speed of the above-described constant-voltage control, the target voltage control operating the above-described target voltage Vs in order that the spectrum of plasma emission generated forwar
    Type: Grant
    Filed: May 26, 2003
    Date of Patent: April 24, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Yoshimitsu Ikari, Hiroshi Tamagaki, Toshimitsu Kohara
  • Patent number: 8133359
    Abstract: An apparatus and methods for plasma-based sputtering deposition using a direct current power supply is disclosed. In one embodiment, a plasma is generated by connecting a plurality of electrodes to a supply of current, and a polarity of voltage applied to each of a plurality of electrodes in the processing chamber is periodically reversed so that at least one of the electrodes sputters material on to the substrate. And an amount of power that is applied to at least one of the plurality of electrodes is modulated so as to deposit the material on the stationary substrate with a desired characteristic. In some embodiments, the substrate is statically disposed in the chamber during processing. And many embodiments utilize feedback indicative of the state of the deposition to modulate the amount of power applied to one or more electrodes.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: March 13, 2012
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Ken Nauman, Hendrik V. Walde, David J. Christie, Bruce Fries
  • Patent number: 8123918
    Abstract: A method for fabricating semiconductor wafers using physical vapor deposition. The method includes maintaining a substrate on a susceptor in a chamber. The substrate has a face positioned within a vicinity of a target material, which is within the chamber. The target member comprises a first side and a second side. Preferably, the first side is positioned toward the face of the substrate. The method includes operating a magnet device fixed about a rotating member, which is coupled to the chamber and is coupled to a drive motor, which is coupled to a driver. A magnet device is positioned from a center region of the rotating member by a predetermined dimension. The method includes moving the magnet device in an annular manner about the center region using the rotating member. The magnet device is rotated at a velocity v and influences a spatial region, which is positioned overlying the second side of the target.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: February 28, 2012
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventor: Chia-Ling Wen
  • Patent number: 8114256
    Abstract: A control system and method for controlling two motors determining the azimuthal and circumferential position of a magnetron rotating about the central axis of the sputter chamber in back of its target sputtering and capable of a nearly arbitrary scan path, e.g., with a planetary gear mechanism. A system controller periodically sends commands to the motion controller which closely controls the motors. Each command includes a command ticket, which may be one of several values. The motion controller accepts only commands having a command ticket of a different value from the immediately preceding command. One command selects a scan profile stored in the motion controller, which calculates motor signals from the selected profile. Another command instructs a dynamic homing command which interrogates sensors of the position of two rotating arms to determine if the arms in the expected positions. If not, the arms are rehomed.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: February 14, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Yu Chang, William Kuang, Ronald D Dedore, Jitendra R. Bhimjiyani, Wesley W Zhang
  • Patent number: 8105466
    Abstract: A biased pulse DC reactor for sputtering of oxide films is presented. The biased pulse DC reactor couples pulsed DC at a particular frequency to the target through a filter which filters out the effects of a bias power applied to the substrate, protecting the pulsed DC power supply. Films deposited utilizing the reactor have controllable material properties such as the index of refraction. Optical components such as waveguide amplifiers and multiplexers can be fabricated using processes performed on a reactor according to the present invention.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: January 31, 2012
    Assignee: SpringWorks, LLC
    Inventors: Hongmei Zhang, Mukundan Narasimhan, Ravi B. Mullapudi, Richard E. Demaray
  • Publication number: 20120018096
    Abstract: The invention relates to a plasma chamber (10, 20, 30) having a first receiving device for a substrate (14, 24, 34) fastened to a first side and having a plasma generation unit for generating a plasma in the plasma chamber, wherein the plasma generation unit is connected or can be connected to a high frequency voltage supply (11, 21, 31). The high frequency voltage supply is designed to generate a modulated, high-frequency alternating voltage and to output said voltage to the plasma generation unit. The plasma generation unit is designed to generate the plasma using the modulated, high-frequency alternating voltage.
    Type: Application
    Filed: March 31, 2010
    Publication date: January 26, 2012
    Inventor: Roland Gesche
  • Publication number: 20110318553
    Abstract: A process for manufacturing a transparent body for use in a touch panel is provided. The process includes: depositing a first transparent layer stack over a substrate with a first dielectric film, a second dielectric film, and a third dielectric film. The first and the third dielectric films have a low refractive index and the second dielectric film has a high refractive index. The process further includes depositing a transparent conductive film in a manner such that the first transparent layer stack and the transparent conductive film are disposed over the substrate in this order. At least one of the first dielectric film, the second dielectric film, the third dielectric film, or the transparent conductive film is deposited by sputtering of a rotatable target. Further thereto, a deposition apparatus for manufacturing a transparent body for use in a touch panel and a transparent body for use in a touch panel are provided.
    Type: Application
    Filed: July 2, 2010
    Publication date: December 29, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventor: Hans-Georg LOTZ
  • Publication number: 20110315554
    Abstract: Certain example embodiments of this invention relate to improved electroplating techniques. More particularly, certain example embodiments of this invention relate to electroplating techniques that incorporate a homogenization unit to help maintain an emulsion within an electrolyte solution (e.g., a nickel electrolyte solution) used in creating a finish (e.g., a satin nickel finish) in an electroplating process. By varying the operational characteristics of the unit (including, for example, pressure, velocity, pore size, ultrasound wave frequency, sonication time, etc.), it becomes possible to control the emulsion particle size distribution so as, for example, increase or decrease the diameter of such particles and thereby resulting in a deposit with a desired surface topography. It will be appreciated that the variations in size will cause variation in surface topography which, in turn, will change the surface appearance.
    Type: Application
    Filed: June 28, 2010
    Publication date: December 29, 2011
    Applicant: Guardian Industries Corp
    Inventors: Lance Colles, Elena Sebe
  • Patent number: 8070356
    Abstract: A method for measuring the temperature of substrates to be coated is disclosed. The substrates have an opening or a cavity, and the substrates are successively moved past a source of coating material. At least one substrate's temperature is measured during coating by at least one temperature sensor and the measured temperature value is transmitted to a measuring device. The temperature sensor is disposed inside the substrate's opening or cavity so as to prevent coating of the temperature sensor.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: December 6, 2011
    Assignee: Von Ardenne Anlagentechnik GmbH
    Inventors: Andreas Heisig, Thomas Meyer
  • Patent number: 8057648
    Abstract: A deposition system and its method of control cancels the influence of noise occurring during measuring of a deposition rate using a noise canceller in order to exactly control the deposition rate, and obtains a film of a desired thickness. The deposition system includes a deposition device. A deposition rate sensor measures a deposition rate of the deposition device. A noise canceller cancels a noise component of the measured deposition rate. A power supply unit adjusts power supplied to the deposition device according to an output of the noise canceller.
    Type: Grant
    Filed: January 4, 2006
    Date of Patent: November 15, 2011
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventor: Min-Jeong Hwang
  • Patent number: 8043481
    Abstract: A sputtering method deposits a film on a substrate by controlling a magnetic field parallel to a surface of a target so that the magnetic field at a part of the target, other than parts of the target which are sputtered during a deposition mode in which a deposition process is performed with respect to the substrate, has an intensity lower than an arbitrary intensity at the other parts during the deposition mode and has an intensity higher than or equal to the arbitrary intensity during a standby mode in which the deposition process is not performed. A redeposited film which is deposited on the part of the target during the deposition mode is removed by performing a sputtering during the standby mode.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: October 25, 2011
    Assignee: Showa Denko K.K.
    Inventors: Yasutake Takamatsu, Katsunori Takahashi, Shin-ichiro Matsuo
  • Patent number: 8043483
    Abstract: To provide a sputtering apparatus that enables oblique film forming by arranging a target and a substrate so as to allow sputtered particles emitted from the target to obliquely enter the substrate selectively, and can form a magnetic film having high uniaxial magnetic anisotropy uniformly and compactly. A sputtering apparatus includes a cathode having a sputtering target supporting surface, the cathode being provided with a rotation axis about which the sputtering target supporting surface rotates, and a stage having a substrate supporting surface, the stage being provided with a rotation axis about which the substrate supporting surface rotates, and the sputtering apparatus is constituted such that the sputtering target supporting surface and the substrate supporting surface face to each other, and are rotatable independently about respective rotation axes.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: October 25, 2011
    Assignee: Canon Anelva Corporation
    Inventors: Tetsuya Endo, Einstein Noel Abarra
  • Publication number: 20110240846
    Abstract: The present teachings provide a method for manufacturing a semiconductor device including a semiconductor substrate and a lower surface electrode in which an aluminum containing layer, a titanium layer, a nickel layer, and a nickel oxidation-prevention layer are laminated in order from a semiconductor substrate side, wherein the titanium layer of the lower electrode is formed by sputtering in an atmosphere of a partial pressure of oxygen being equal to or less than 5×10?6 Pa.
    Type: Application
    Filed: June 17, 2011
    Publication date: October 6, 2011
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Yasutaka TAKEUCHI
  • Publication number: 20110241239
    Abstract: A nano-imprinting system may be configured to at least one of transport, emboss, coat and slit an optical media according to operational parameters. A control system may be configured to detect one or more attributes of the optical media that result from at least one of the embossing and coating of the optical media, and to adjust at least one of the operational parameters based on the detected one or more attributes.
    Type: Application
    Filed: March 30, 2010
    Publication date: October 6, 2011
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventor: Faramarz Mahnad
  • Patent number: 8012314
    Abstract: There is disclosed a manufacturing method of a phase shift mask blank in which dispersions of phase angle and transmittance among blanks can be reduced as much as possible and yield is satisfactory. In the manufacturing method of the phase shift mask blank, a process of using a sputtering method to continuously form a thin film on a transparent substrate comprises: successively subjecting a plurality of substrates to a series of process of supplying the transparent substrate into a sputtering chamber, forming the thin film for forming a pattern in the sputtering chamber, and discharging the transparent substrate with the film formed thereon from the sputtering chamber; supplying and discharging the transparent substrate substantially at a constant interval; and setting a film formation time to be constant among a plurality of blanks.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: September 6, 2011
    Assignee: Hoya Corporation
    Inventors: Osamu Nozawa, Hideaki Mitsui
  • Patent number: 7988833
    Abstract: A system and method for detecting the potential of non-cathode arcing in a plasma generation apparatus, such as a physical vapor deposition chamber. The system and method involve computing a statistical parameter of cathode-arcing event data in the chamber and performing a pattern recognition technique to a moving average of the statistical parameter.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: August 2, 2011
    Assignee: Schneider Electric USA, Inc.
    Inventor: Alan F. Krauss
  • Patent number: 7981257
    Abstract: An apparatus and technique are provided for generating a plasma using a power supply circuit and arc detection arrangement. The power supply circuit has a cathode enclosed in a chamber, and is adapted to generate a power-related parameter. The arc detection arrangement is communicatively coupled to the power supply circuit and adapted to assess the severity of arcing in the chamber by comparing the power-related parameter to at least one threshold. According to various implementations, arc occurrences, arcing duration, intensity and/or energy are measured responsive to comparing the power-related parameter to the at least one threshold. According to further implementations, the above-mentioned measured quantities are accumulated and/or further processed. An apparatus and method are also provided for detecting arc events when the current spikes above a threshold level.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: July 19, 2011
    Assignee: Schneider Electric USA, Inc.
    Inventors: Alan F. Krauss, Raymond W. Harris, Paul R. Buda
  • Publication number: 20110168545
    Abstract: Provided is a sputtering apparatus which can form a multilayer film giving high productivity and with less spiral pattern by effective use of targets, and a method of forming multilayer film using the apparatus. An embodiment is a multilayer-film sputtering apparatus comprising: a rotatable cathode unit (30) having cathodes (7a and 7b) arranged on the same circumference with respect to the rotational center, and having a power-supply mechanism for supplying power to each cathode; a sensor (14) for detecting the position of cathode; and a rotation mechanism for rotating the cathode unit (30).
    Type: Application
    Filed: February 16, 2011
    Publication date: July 14, 2011
    Applicant: CANON ANELVA CORPORATION
    Inventor: Masahiro Shibamoto
  • Publication number: 20110168552
    Abstract: An exemplary system for sputtering deposition includes a sputtering chamber and a gas supplying system. The sputtering chamber includes a first sputtering space and a second sputtering space isolated from the first sputtering space. Each of the first and second sputtering spaces is configured for receiving a target and a substrate therein. The gas supplying system includes a reactive gas source, an inert gas source, a first chamber in communication with the reactive gas source and the inert gas source, and a second chamber in communication with the inert gas source. Both the first and second chambers are in communication with the first and second sputtering spaces through valves.
    Type: Application
    Filed: July 29, 2010
    Publication date: July 14, 2011
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: HSIN-CHIN HUNG
  • Patent number: 7972483
    Abstract: A method for material processing utilizing a material processing system to perform a process. The method performs a process (510), measures a scan of data (520), and transforms the data scan (530) into a signature (540) including at least one spatial component. The scan of data (530) can include a process performance parameter such as an etch rate, an etch selectivity, a deposition rate, a film property, etc. The signature (540) can be stored (550), and compared with either a previously acquired signature or with an ideal signature (560). If at least one spatial component substantially deviates from the reference spatial component, then a process fault has potentially occurred. If the cumulative deviation of all spatial components or a select group of components substantially deviates from a reference set of spatial components, then a process fault has potentially occurred.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: July 5, 2011
    Assignee: Tokyo Electron Limited
    Inventors: John Donohue, Hongyu Yue
  • Patent number: 7955480
    Abstract: The present invention provides a sputtering apparatus and a film deposition method capable of forming a magnetic film with reduced variations in the direction of magnetic anisotropy. The sputtering apparatus of the present invention is provided with a rotatable cathode (802), a rotatable stage (801) and a rotatable shielding plate (805). The sputtering apparatus controls the rotation of at least one of the cathode (802), stage (801) and shielding plate (805) so that sputtered particles impinging at an angle formed with respect to a normal line of the substrate (804) of 0° or more and 50° or less out of sputtered particles generated from the target (803a) during sputtering are made to impinge on the substrate (804).
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: June 7, 2011
    Assignee: Canon Anelva Corporation
    Inventors: Tetsuya Endo, Einstein Noel Abarra
  • Publication number: 20110120858
    Abstract: To uniformly perform processing such as deposition on a processing object such as a large, heavy substrate for optics, the large, heavy substrate for optics is accurately, reliably attached to a holder.
    Type: Application
    Filed: January 28, 2011
    Publication date: May 26, 2011
    Applicant: CANON ANELVA CORPORATION
    Inventor: Yuji Kajihara
  • Patent number: 7927472
    Abstract: To provide a method of controlling film thickness of dielectric multilayer film, such as optical thin film, with high precision, an optical film thickness controlling apparatus and a dielectric multilayer film manufacturing apparatus that can control the film thickness based on the same method, and dielectric multilayer film manufactured using the controlling apparatus or manufacturing apparatus. An optical film thickness controlling apparatus includes a film formation device 15 having a rotatable substrate 23 and a sputtering target 28, a photodiode 16 that detects each of a plurality of monochromatic light beams applied to the rotatable substrate along a radius thereof at predetermined intervals, and an A/D converter 17, in which a movable shutter 29 that moves along the direction of the radius of the rotatable substrate 23 to shut off film formation on the substrate 23 is provided between the substrate 23 and the target 28.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: April 19, 2011
    Assignee: Ulvac, Inc.
    Inventors: Haruo Takahashi, Kouichi Hanzawa, Takafumi Matsumoto
  • Patent number: 7922880
    Abstract: Local plasma density, e.g., the plasma density in the vicinity of the substrate, is increased by providing an ion extractor configured to transfer ions and electrons from a first region of magnetically confined plasma (typically a region of higher density plasma) to a second region of plasma (typically a region of lower density plasma). The second region of plasma is preferably also magnetically shaped or confined and resides between the first region of plasma and the substrate. A positively biased conductive member positioned proximate the second region of plasma serves as an ion extractor. A positive bias of about 50-300 V is applied to the ion extractor causing electrons and subsequently ions to be transferred from the first region of plasma to the vicinity of the substrate, thereby forming higher density plasma. Provided methods and apparatus are used for deposition and resputtering.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: April 12, 2011
    Assignee: Novellus Systems, Inc.
    Inventors: Anshu A. Pradhan, Douglas B. Hayden, Ronald L. Kinder, Alexander Dulkin
  • Patent number: 7914654
    Abstract: This application discloses a method and apparatus for manufacturing a magnetoresistive multilayer film having a structure where an antiferromagnetic layer, a pinned-magnetization layer, a nonmagnetic spacer layer and a free-magnetization layer are laminated on a substrate in this order. A film for the antiferromagnetic layer is deposited by sputtering as oxygen gas is added to a gas for the sputtering. A film for an extra layer interposed between the substrate and the antiferromagnetic layer is deposited by sputtering as oxygen gas is added to a gas for the sputtering. The film for the antiferromagnetic layer is deposited by sputtering as a gas mixture of argon and another gas of larger atomic number than argon is used.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: March 29, 2011
    Assignee: Anelva Corporation
    Inventors: David Djulianto Djayaprawira, Koji Tsunekawa, Motonobu Nagai
  • Patent number: 7891536
    Abstract: A PVD target structure for use in physical vapor deposition. The PVD target structure includes a consumable slab of source material and one or more detectors for indicating when the slab of source material is approaching or has been reduced to a given quantity representing a service lifetime endpoint of the target structure. Each detector includes an enclosure which may be made by forming a plurality of bores in a bulk material and separating the bulk material into a plurality of discrete enclosure units each including one of the bores. Alternatively, the enclosure of the detector may be made using a mold having one or more mold members and an extrusion, casting, electrical chemical plating, and/or sheet forming method.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: February 22, 2011
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Li Hsiao, Chen-Hua Yu, Jean Wang, Lawrance Sheu
  • Publication number: 20110005920
    Abstract: Various embodiments of the present invention are generally directed to an apparatus and method for low temperature physical vapor deposition (PVD) of an amorphous thin film layer of material onto a substrate. A PVD chamber is configured to support a substrate and has a cathode target with a layer of sputtering material thereon, an anode shield, and a magnetron assembly adjacent the target. A high impulse power magnetron sputtering (HiPIMS) power supply is coupled to the PVD chamber, the power supply having a charging circuit and a charge storage device. The power supply applies relatively high energy, low duty cycle pulses to the magnetron assembly to sputter, via self ionizing plasma, relatively low energy ions from the layer of sputtering material to deposit an amorphous thin film layer onto the substrate.
    Type: Application
    Filed: July 13, 2009
    Publication date: January 13, 2011
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Ivan Petrov Ivanov, Antoine Khoueir, Wei Tian, Paul E. Anderson, Lili Jia, Yongchul Ahn, Michael Xuefei Tang, Yang Dong
  • Patent number: 7857946
    Abstract: A sputtering film forming method. which positions a target 4 and 5 at an incline to a surface of a substrate 10 whereupon a film is to be formed, and forms the film upon the surface of the substrate 10 whereupon the film is to be formed in an incline direction while the substrate 10 is rotated about a normal axis, terminates the forming of the film at a predetermined timing from the commencement of the forming of the film, wherein the forming of the film is terminated, when the substrate has rotated by 360 degrees×n+180 degrees+?, where n is a natural number, including 0, and ?10 degrees<?<10 degrees.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: December 28, 2010
    Assignee: Canon Anelva Corporation
    Inventors: Naomu Kitano, Naoki Yamada, Takaaki Tsunoda, Nobuo Yamaguchi, Motomu Kosuda
  • Publication number: 20100314246
    Abstract: A sputter-coating apparatus includes a vacuum housing, a substrate holder and a target holder positioned in the vacuum housing and facing each other, a temperature sensing unit, a heating unit, and a control unit. The substrate holder is configured for supporting a plurality of substrates to be coated and includes a central portion and a peripheral portion surrounding the central portion. The target holder is configured for mounting target material. The temperature sensing unit is configured for detecting a temperature of the central portion and a temperature of the peripheral portion. The control unit is configured for comparing the temperature of the central portion and the temperature of the peripheral portion and controlling the heating unit to heat the peripheral portion if the temperature of the central portion is greater than the temperature of the peripheral portion.
    Type: Application
    Filed: December 30, 2009
    Publication date: December 16, 2010
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: HSIANG-HUNG CHEN