Electrolytic Analysis Or Testing (process And Electrolyte Composition) Patents (Class 205/775)
  • Publication number: 20140106472
    Abstract: Provided are site specific chemically modified nanopore devices and methods for manufacturing and using them. Site specific chemically modified nanopore devices can be used for analyte sensing and analysis, for example.
    Type: Application
    Filed: April 11, 2012
    Publication date: April 17, 2014
    Applicant: ELECTRONIC BIOSCIENCES, INC.
    Inventors: Eric N. Ervin, John J. Watkins, Geoffrey A. Barrall
  • Publication number: 20140102914
    Abstract: A sensor for detecting a target analyte in a gaseous sample at ultra-low concentrations wherein access opening(s) provided through the sensor housing are plugged with endcap(s) and spent gas (i.e., gaseous sample post detection) is channeled along the interface between the sensor housing and the endcap(s) prior to venting of the spent gas, for flushing any environmentally introduced target analyte from this interface.
    Type: Application
    Filed: October 11, 2012
    Publication date: April 17, 2014
    Applicant: MOCON, INC.
    Inventor: MOCON, INC.
  • Patent number: 8691071
    Abstract: A method for measuring the transmission rate of an analyte through a film. The method includes the steps of (i) separating a chamber into a first cell and a second cell with a known area of a film, (ii) flushing the first cell with an inert gas to remove any target analyte from the first cell, (iii) introducing a gas containing a known concentration of an analyte into the second cell, (iv) sealing the first cell to gas flow through the first cell, and (v) sensing any analyte in the first cell with a sensor that consumes the analyte at a rate greater than the rate at which the analyte is passing through the film, until a steady state rate of analyte consumption is measured by the sensor.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: April 8, 2014
    Assignee: Mocon, Inc.
    Inventors: Daniel W. Mayer, Stephen D. Tuomela
  • Patent number: 8685227
    Abstract: The invention refers to a sample fluid testing device for analyzing a sample fluid, comprising a test media tape (1) comprising a tape (2) and a plurality of test media portions (3), each test media portion (3) containing a sensor field (7) for producing electrical signals, when the sample fluid is applied and at least two electrodes (4), the at least two electrodes (4) being positioned in the sensor field (7) and being electrically connected to at least two contact fields (5). The sample fluid testing device contains at least one roller with a surface (17), which contains at least one contact zone (14), the at least one roller (12, 13) being in rolling engagement with the test media tape (1) with its surface (17) in order to successively electrically contact the test media portions (3) via at least one contact field (5) with the at least one contact zone (14), the at least one contact zone (14) on the at least one roller (12, 13) being electrically connected to a meter for measuring the electrical signals.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: April 1, 2014
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Hans List, Michael Marquant, Steven N. Roe
  • Patent number: 8685228
    Abstract: A sensing apparatus comprising an ion sensitive field effect transistor arranged to generate an electrical output signal in response to localized fluctuations of ionic charge at or adjacent the surface of the transistor, and means for detecting the electrical output signal from the ion sensitive field effect transistor, the localized fluctuations of ionic charge indicating events occurring during a chemical reaction.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: April 1, 2014
    Assignee: DNA Electronics Limited
    Inventors: Christofer Toumazou, Sunil Purushothaman
  • Publication number: 20140083865
    Abstract: An electrochemical sensor for the detection and analysis of an analyte in a solution is disclosed. The electrochemical sensor has an electrically non-conductive support; a plurality of electrodes on the support, each electrode formed from an electrode material and having a first surface and an opposite second surface, said first surface facing towards the support and the second surface facing away from the support. The plurality of electrodes includes a reference electrode, a counter electrode, and a working electrode. The working electrode has a reagent composition containing a reagent for detecting an analyte applied directly to the second surface of the working electrode or dispersed throughout the electrode material of the working electrode.
    Type: Application
    Filed: September 23, 2013
    Publication date: March 27, 2014
    Applicant: Lonza, Inc.
    Inventors: Touraj ROWHANI, Sung Il CHANG
  • Patent number: 8668819
    Abstract: A biosensor with an underfill recognition system assesses whether to analyze a sample for one or more analytes in response to the volume of the sample. The underfill recognition system applies polling and test excitation signals to the sample. The polling signals generate one or more polling output signals, which maybe used to detect when a sample is present and to determine whether the sample has sufficient volume for analysis. The test excitation signal generates one or more test output signals, which may be used to determine one or more analyte concentrations in the sample.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: March 11, 2014
    Assignee: Bayer HealthCare LLC
    Inventors: Huan-Ping Wu, Joseph E. Perry, Christine Trippel, Eric Maurer
  • Publication number: 20140042036
    Abstract: A sensing method of an electrochemical sensor including the following steps is provided. First, a fluorescent material is immobilized on a surface of an electrode so as to form a sensing electrode. The sensing electrode is then used to execute an electrochemical test of a target in a light-shielding environment.
    Type: Application
    Filed: December 26, 2012
    Publication date: February 13, 2014
    Applicant: I-SHOU UNIVERSITY
    Inventors: Jau-Yann Wu, Shih-Han Wang
  • Publication number: 20140042037
    Abstract: Methods and devices for analyzing a chemical analyte using an electrochemical cell connected to a measuring apparatus are provided. The electrochemical cell contains a solution having one or more conductive or redox active NPs, one or more chemical analytes, and an indicator. In addition, the electrochemical cell contains one or more electrodes in communication with the solution. One or more catalytic ECL properties are generated by the interaction of the one or more conductive or redox active NPs and the liquid sample and measured at the one or more electrodes or with an optical detection system.
    Type: Application
    Filed: October 17, 2013
    Publication date: February 13, 2014
    Inventors: Fu-Ren F. Fan, Allen J. Bard, Xiaoying Xiao
  • Patent number: 8648601
    Abstract: The present invention describes a method for the measurement of the stabilizer additive concentration in electroless metal and metal alloy plating electrolytes comprising a voltammetric measurement. Said method comprises the steps a. conditioning of the working electrode, b. interaction of intermediates on the working electrode, c. measurement of the Faradaic current and d. determining the Faradaic current.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: February 11, 2014
    Assignee: Atotech Deutschland GmbH
    Inventors: Constanze Donner, Guenther Bauer, Therese Stern, Kay Wurdinger, Lutz Brandt, Frank Bruening
  • Patent number: 8641888
    Abstract: Methods and systems for measuring the oxidation-reduction potential of a fluid sample are provided. The system includes a test strip with a sample chamber adapted to receive a fluid sample. The sample chamber can be associated with a filter membrane. The test strip also includes a reference cell. The oxidation-reduction potential of a fluid sample placed in the sample chamber can be read by a readout device interconnected to a test lead that is in electrical contact with the sample chamber, and a reference lead that is in electrical contact with the reference cell. Electrical contact between a fluid sample placed in the sample chamber and the reference cell can be established by a bridge. The oxidation-reduction potential may be read as an electrical potential between the test lead and the reference lead of the test strip.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: February 4, 2014
    Assignee: Luoxis Diagnostics, Inc.
    Inventors: Leonard T. Rael, David Bar-Or, Raphael Bar-Or
  • Publication number: 20140021064
    Abstract: Systems and methods of fast power up for electrochemical sensors are provided. A system can include an electrochemical sensor, and a potentiostat circuit, wherein, upon startup, the potentiostat circuit drives the electrochemical sensor to the electrochemical sensor's normal operating condition at a rate that is not limited by voltage and/or current supply. A method can include a potentiostat circuit driving an electrochemical sensor to the electrochemical sensor's normal operating condition at a rate that is not limited by voltage and/or current supply.
    Type: Application
    Filed: July 17, 2013
    Publication date: January 23, 2014
    Inventors: Keith Francis Edwin Pratt, Ali Hosseinmardi
  • Publication number: 20140014532
    Abstract: An adjustable insertion assembly for an electrochemical sensor includes an electrode holder to receive the sensor, having a distal aperture to permit process fluid to contact the sensor. A receptacle slidably receives the holder, for a sliding range of motion extending from fully inserted to fully retracted positions. An open distal end portion of the receptacle extends through a wall of a process fluid vessel, so that the aperture is open to the process fluid when fully inserted, and closed when fully retracted. A leverage member is releasably movable relative to the receptacle, and moves with a captured extension. An abutment of the receptacle engages the extension so that movement of the leverage member in opposite directions alternately clamps and releases the electrode holder relative to the receptacle to substantially prevent and permit movement at substantially any point within the range of movement.
    Type: Application
    Filed: September 23, 2013
    Publication date: January 16, 2014
    Applicant: Invensys Systems, Inc.
    Inventor: Steven B. Talutis
  • Publication number: 20140014531
    Abstract: Performing an electrokinetic treatment on different samples includes identifying an electrical signal that is appropriate for use in the treatment of each sample. The identification of the electrical signals results in different electrical signals being identified for different samples. The electrokinetic treatment of a sample results in that sample being exposed to the electrical signal identified for that sample. Accordingly, different samples are exposed to different electrical signals. An electrokinetic treatment employs one or more electrokinetic phenomena to cause movement of one or more agents within the sample relative to the sample. In some instances, the method also includes using each of the electrokinetically treated samples to generate an electrochemical sample and then performing an electrochemical analysis on each of the electrochemical samples.
    Type: Application
    Filed: July 8, 2013
    Publication date: January 16, 2014
    Inventor: Jen-Jr Gau
  • Patent number: 8617381
    Abstract: A test sensor includes a body, a first conductive trace, a second conductive trace, and a third conductive trace. The body includes a first region that has a fluid-receiving area, a second region separate from the first region, and a first temperature sensing interface disposed at or adjacent to the fluid-receiving area. The fluid-receiving area receives a sample. The first trace is disposed on the body, and at least a portion of the first trace is disposed in the first region. The second and third traces are disposed on the body. The third trace extends from the first to the second regions. The third trace is connected to the first trace at the first temperature sensing interface. The third trace includes a different material than the first trace. A first thermocouple is formed at the first temperature sensing interface. The thermocouple provides temperature data to determine an analyte concentration.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: December 31, 2013
    Assignee: Bayer Healthcare LLC
    Inventors: Steve Hoi-Cheong Sun, Swetha Chinnayelka, John P. Creaven, Andrew J. Edelbrock, Matthew B. Holzer, Narasinha C. Parasnis, Jeffery S. Reynolds, Paul M. Ripley, Steven C. Charlton, Xin Wang, Mu Wu
  • Patent number: 8617369
    Abstract: The present the invention provides methods, devices and systems for rapidly measuring analytes within a biological sample.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: December 31, 2013
    Assignee: Abbott Diabetes Care Inc.
    Inventor: Simon Tonks
  • Patent number: 8614087
    Abstract: Provided herein is technology relating to testing biological samples and particularly, but not exclusively, to devices, systems, and kits for performing multiple, simultaneous real-time assays on a sample in a single-use disposable format. For example, the technology relates to an apparatus that finds use, for example, for point-of-care diagnostics, including use at accident sites, emergency rooms, in surgery, in intensive care units, as well as for non-medical applications.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: December 24, 2013
    Assignee: Ibis Biosciences, Inc.
    Inventors: Jared J. Drader, Gordon Bruce Collier, Steven A. Hofstadler
  • Patent number: 8613842
    Abstract: A layered electrocatalyst for oxidizing ammonia, ethanol, or combinations thereof, comprising: a carbon support integrated with a conductive metal; at least one first metal plating layer at least partially deposited on the carbon support, wherein the at least one first metal plating layer is active to OH adsorption and inactive to a target species, and wherein the at least one first metal plating layer has a thickness ranging from 10 nanometers to 10 microns; and at least one second metal plating layer at least partially deposited on the at least one first metal plating layer, wherein the at least one second metal plating layer is active to the target species, and wherein the at least one second metal plating layer has a thickness ranging from 10 nanometers to 10 microns, forming a layered electrocatalyst.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: December 24, 2013
    Assignee: Ohio University
    Inventor: Gerardine G. Botte
  • Publication number: 20130334061
    Abstract: A Sensor for sensing the presence of at least one fluidum in a space adjoining the sensor is disclosed. In one aspect, the sensor has a two-dimensional electron gas (2DEG) layer stack, a gate electrode overlaying at least part of the 2DEG layer stack for electrostatically controlling electron density of a 2DEG in the 2DEG layer stack and a source and a drain electrode contacting the 2DEG layer stack for electrically contacting the 2DEG, wherein a detection opening is provided in between the gate electrode and the 2DEG layer stack and wherein the detection opening communicates with the space through a detection opening inlet such that molecules of the fluidum can move from the adjoining space through the detection opening inlet into the detection opening where they can measurably alter a electric characteristic of the 2DEG.
    Type: Application
    Filed: June 4, 2013
    Publication date: December 19, 2013
    Inventors: Peter Offermans, Roman Vitushinsky, Mercedes Crego Calama, Sywert Brongersma
  • Patent number: 8603322
    Abstract: The purpose of the invention is to provide a method for accurately quantifying a chemical substance by a substitutional stripping voltammetry technique. A method is provided for quantifying a chemical substance contained in a sample solution, and the method comprises preparing a measurement system. The measurement system comprises a pair of working electrodes (a first and a second electrodes), a counter electrode, and a gel-coated electrode. This gel-coated electrode comprises an electrode surface, a stripping gel, and a protection gel, and the protection gel covers the stripping gel.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: December 10, 2013
    Assignee: Panasonic Corporation
    Inventor: Satoshi Arimoto
  • Patent number: 8591722
    Abstract: A method is provided for determining analyte concentrations, for example glucose concentrations, that utilizes a dynamic determination of the appropriate time for making a glucose measurement, for example when a current versus time curve substantially conforms to a Cottrell decay, or when the current is established in a plateau region. Dynamic determination of the time to take the measurement allows each strip to operate in the shortest appropriate time frame, thereby avoiding using an average measurement time that may be longer than necessary for some strips and too short for others.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: November 26, 2013
    Assignee: AgaMatrix, Inc.
    Inventors: Steven Diamond, Ian Harding, Sridhar G. Iyengar, Baoguo Wei
  • Publication number: 20130306492
    Abstract: A method for monitoring a select analyte in a sample in an electrochemical system. The method includes applying to the electrochemical system a time-varying potential superimposed on a DC potential to generate a signal; and discerning from the signal a contribution from the select analyte by resolving an estimation equation based on a Faradaic signal component and a nonfaradaic signal component.
    Type: Application
    Filed: October 18, 2012
    Publication date: November 21, 2013
    Applicant: AGAMATRIX, INC.
    Inventor: AgaMatrix, Inc.
  • Patent number: 8585879
    Abstract: An embodiment of the invention provides an ultrasensitive and selective system and method for detecting reactants of the chemical reaction catalyzed by an oxidoreductase, such as glucose and ethanol, at a concentration level down to zepto molar (10?21 M). In embodiments, the invention provides a cyclic voltammetry system comprising a working electrode, an oxidoreductase, and an electric field generator, wherein the oxidoreductase is immobilized on the working electrode; and the electric field generator generates an electric field that permeates at least a portion of the interface between the oxidoreductase and the working electrode. The ultrasensitivity of the system and method is believed to be caused by that the electrical field enhances quantum mechanical tunneling effect in the interface, and therefore facilitates the interfacial electron transfer between the oxidoreductase and the working electrode.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: November 19, 2013
    Assignee: Cleveland State University
    Inventor: Siu-Tung Yau
  • Patent number: 8586378
    Abstract: Methods, compositions and kits for analyzing a chemical analyte using an electrochemical cell connected to a measuring apparatus are provided. The electrochemical cell contains a solution having one or more conductive or redox active NPs (nanoparticles), one or more chemical analytes, and an indicator. In addition, the electrochemical cell contains one or more electrodes in communication with the solution. One or more catalytic ECL properties are generated by the interaction of the one or more conductive or redox active NPs and the liquid sample and measured at the one or more electrodes or with an optical detection system.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: November 19, 2013
    Assignee: Board of Regents, The University of Texas System
    Inventors: Fu-Ren F. Fan, Allen J. Bard, Xiaoyin Xiao
  • Publication number: 20130292264
    Abstract: The present invention related to a test strip and a method for humidity detection. The test strip comprises two humidity detecting materials for detecting humidity change and one of the humidity detecting materials is exposed to outer environment. Detect the two humidity changes to obtain a ratio that is used for comparing with a value and then it can prevent from exceeding a predetermined humidity value, and whereby the test strip and the method could achieve the goal of simple humidity detection.
    Type: Application
    Filed: April 23, 2013
    Publication date: November 7, 2013
    Applicant: TAIDOC TECHNOLOGY CORPORATION
    Inventors: Hui-Sheng Hou, Chia-Chi Wu, Tai-Cheng Chou
  • Patent number: 8574413
    Abstract: Improvements in references electrodes, halogen sensors, pH sensors, TDS sensors, combinations thereof, and related methods.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: November 5, 2013
    Assignee: Digital Concepts of Missouri, Inc.
    Inventors: Michael D. Mosley, Paul Decker
  • Patent number: 8574423
    Abstract: A biosensor includes a working electrode 101, a counter electrode 102 opposing the working electrode 101, a working electrode terminal 103 and a working electrode reference terminal 10 connected to the working electrode 101 by wires, and a counter electrode terminal 104 connected to the counter electrode 102 by a wire. By employing a structure with at least three electrodes, it is possible to assay a target substance without being influenced by the line resistance on the working electrode side.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: November 5, 2013
    Assignee: Panasonic Corporation
    Inventors: Hiroya Ueno, Junji Nakatsuka
  • Patent number: 8568578
    Abstract: An object of the present invention is to provide an electrode for an electrochemical measurement apparatus that is less susceptible to influence from interference substances as compared to conventional technology and an electrochemical measurement apparatus using such an electrode. A working electrode 9 (an electrode 1 for an electrochemical measurement apparatus) used in an electrochemical measurement apparatus 3 of the present invention uses an alloy containing iridium and rhenium with such a composition that selectivity for hydrogen peroxide can be obtained.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: October 29, 2013
    Assignees: NEC Corporation, National Institute for Materials Science
    Inventors: Toru Matsumoto, Naoaki Sata, Yoko Mitarai
  • Publication number: 20130277232
    Abstract: A multiple layer gel and method for forming a multiple layer gel are provided. The multiple layer gel includes an isolation layer and an electrolyte layer. The isolation layer provides a molecular weight screen, to prevent proteins or other molecules from contacting a reference cell covered by the isolation layer. The electrolyte layer covers the isolation layer, and provides a source of ions that place the reference cell in ionic and/or electrical contact with a fluid sample. The multiple layer gel can be used to maintain a reliable reference voltage from an associated reference cell while an electrical potential or other electrical characteristic of a sample fluid is being determined.
    Type: Application
    Filed: April 19, 2013
    Publication date: October 24, 2013
    Applicant: Luoxis Diagnostics, Inc.
    Inventors: Raphael Bar-Or, David Bar-Or, Leonard T. Rael
  • Patent number: 8564315
    Abstract: Apparatus and methods for measuring an effect of corrosion with a corrosion sensor. The apparatus includes at least a portion of a metal material configured to be disposed within a borehole and exposed to a fluid. The apparatus includes a sensor configured to measure an effect of corrosion of the at least portion of the metal material within the fluid.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: October 22, 2013
    Assignee: Schlumberger Technology Corporation
    Inventors: Patrick J. Fisseler, Anthony R. H. Goodwin, Pierre Campanac, John W. Still
  • Patent number: 8557989
    Abstract: The present invention provides novel osmium-based electrochemical species for the detection of wide variety of analytes using immunological techniques. The present invention also provides diagnostic kits and test sensors supporting electrode structures that can be used with the osmium-based electrochemical species. The test sensor can be fabricated to support interdigitated arrays of electrodes that have been designed to provide amplification of the electrical signal amplification desired to analyze analytes that may be present at low concentrations.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: October 15, 2013
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Eric R. Diebold, Mitali Ghoshal, David Z. Deng, Jane Shiow-Chuan Tsai
  • Patent number: 8551308
    Abstract: An electrochemical biosensor with electrode elements that possess smooth, high-quality edges. These smooth edges define gaps between electrodes, electrode traces and contact pads. Due to the remarkable edge smoothness achieved with the present invention, the gaps can be quite small, which provides marked advantages in terms of test accuracy, speed and the number of different functionalities that can be packed into a single biosensor. Further, the present invention provides a novel biosensor production method in which entire electrode patterns for the inventive biosensors can be formed all at one, in nanoseconds—without regard to the complexity of the electrode patterns or the amount of conductive material that must be ablated to form them.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: October 8, 2013
    Assignees: Roche Diagnostics Operations, Inc., Roche Operations Ltd.
    Inventors: Raghbir S. Bhullar, Eric R. Diebold, Brian S. Hill, Nigel Surridge, Paul Douglas Walling
  • Patent number: 8551320
    Abstract: Methods for calculating an analyte concentration of a sample are provided. In one exemplary embodiment the method includes steps that are directed toward accounting for inaccuracies that occur as a result of temperature variations in a sample, a meter, or the surrounding environment. In another exemplary embodiment the method includes steps that are directed toward determining whether an adequate sample is provided in a meter because insufficient samples can result in inaccuracies. The methods that are provided can be incorporated into a variety of mechanisms, but they are primarily directed toward glucose meters for blood samples and toward meters for controls solutions.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: October 8, 2013
    Assignee: LifeScan, Inc.
    Inventors: Alastair M. Hodges, Ronald C. Chatelier
  • Patent number: 8551321
    Abstract: A process is provided for verifying an electrochemical substance in a gas sample. The process generates in an electrochemical sensor a measured electric value changing over time with a characteristic rising from a reference line to a maximum and again declining to the reference line. The percentage of the electrochemical substance in the gas sample is determined in an analysis circuit by setting a first interval and a second interval in the range of the characteristic after the maximum has been exceeded. The first interval includes the range of the characteristic in the vicinity of the maximum and the second interval includes the range of the maximum in the vicinity of the reference line. The electrochemical substance is determined by determining the ratio of the slopes of the first and second intervals and by comparison with a reference value of the ratio of the slopes of the first and second intervals.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: October 8, 2013
    Assignee: Dräger Safety AG & Co. KGaA
    Inventor: Burkhard Stock
  • Publication number: 20130260472
    Abstract: Described are devices and methods for forming one or more nanomembranes including electroactive nanomembranes within a nanowell or nanotube, or combinations thereof, in a support material. Nanopores/nanochannels can be formed by the electroactive nanomembrane within corresponding nanowells. The electroactive nanomembrane is capable of controllably altering a dimension, a composition, and/or a variety of properties in response to electrical stimuli. Various embodiments also include devices/systems and methods for using the nanomembrane-containing devices for molecular separation, purification, sensing, etc.
    Type: Application
    Filed: April 2, 2012
    Publication date: October 3, 2013
    Applicant: Lux Bio Group, Inc.
    Inventor: Gordon HOLT
  • Publication number: 20130260371
    Abstract: Described are devices and methods for forming one or more nanomembranes including electroactive nanomembranes within a nanowell or nanotube, or combinations thereof, in a support material. Nanopores/nanochannels can be formed by the electroactive nanomembrane within corresponding nanowells. The electroactive nanomembrane is capable of controllably altering a dimension, a composition, and/or a variety of properties in response to electrical stimuli. Various embodiments also include devices/systems and methods for using the nanomembrane-containing devices for molecular separation, purification, sensing, etc.
    Type: Application
    Filed: April 2, 2012
    Publication date: October 3, 2013
    Applicant: LUX BIO GROUP, INC.
    Inventor: Gordon HOLT
  • Publication number: 20130248379
    Abstract: An integrated sensing device is capable of detecting analytes using electrochemical (EC) and electrical (E) signals. The device introduces synergetic new capabilities and enhances the sensitivity and selectivity for real-time detection of an analyte in complex matrices, including the presence of high concentration of interferences in liquids and in gas phases.
    Type: Application
    Filed: May 13, 2013
    Publication date: September 26, 2013
    Applicant: Arizona Board of Regents for and on Behalf of Arizona State University
    Inventors: Nongjian Tao, Erica Forzani
  • Publication number: 20130240376
    Abstract: Described herein is a method of detecting an analyte comprising providing a capture electrode comprising probe molecules at the surface thereof, wherein the probe molecules are designed to specifically bind to said analyte, contacting the capture electrode with a sample solution, such that said analyte in the solution forms a probe-analyte complex at the surface of said capture electrode, and measuring the electrical properties of the capture electrode after contact with said sample solution, wherein changes in said electrical properties are indicative of the formation of the probe-analyte complex at the electrode surface. The measuring is conducted in measuring solutions comprising solvents having high dielectric constants, or measuring solutions having high pH, or with electrode surfaces having been contacted with solutions comprising organic solvents.
    Type: Application
    Filed: September 2, 2011
    Publication date: September 19, 2013
    Applicant: HEED DIAGNOSTICS APS
    Inventor: Jeppe Resen Amossen
  • Patent number: 8535499
    Abstract: Micromachined reference electrodes for use in miniaturized electrochemical sensors, and methods for fabricating such reference electrodes and electrochemical sensors, for example, as a part of a microfluidic system, are disclosed. Electrochemical measurements allow for inexpensive detection of a wide variety of (bio-)chemical compounds in solution. The reference electrode is one of the main parts of an electrochemical cell. The reference electrode, from which no current is drawn, has a stable, constant potential.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: September 17, 2013
    Assignee: Stichting IMEC Nederland
    Inventors: Michiel Blauw, Javier Gonzalo Ruiz, Mercedes Crego Calama, Sywert H. Brongersma
  • Patent number: 8529751
    Abstract: Described herein are systems and methods for distinguishing between a control solution and a blood sample. In one aspect, the methods include using a test strip in which multiple current transients are measured by a meter electrically connected to an electrochemical test strip. The current transients are used to determine if a sample is a blood sample or a control solution based on at least two characteristics. Further described herein are methods for calculating a discrimination criteria based upon at least two characteristics. Still further described herein are system for distinguishing between blood samples and control solutions.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: September 10, 2013
    Assignee: LifeScan, Inc.
    Inventors: Ronald C. Chatelier, Alastair McIndoe Hodges, Maria Teodorczyk, Remedios Dato
  • Publication number: 20130228472
    Abstract: A sensor system, device, and methods for determining the concentration of an analyte in a sample is described. Gated voltammetric pulse sequences including multiple duty cycles of sequential excitations and relaxations may provide a shorter analysis time and/or improve the accuracy and/or precision of the analysis. The disclosed pulse sequences may reduce analysis errors arising from the hematocrit effect, variance in cap-gap volumes, non-steady-state conditions, mediator background, a single set of calibration constants, under-fill, and changes in the active ionizing agent content of the sensor strip.
    Type: Application
    Filed: February 28, 2013
    Publication date: September 5, 2013
    Applicant: Bayer HealthCare LLC
    Inventor: Huan-Ping Wu
  • Publication number: 20130220835
    Abstract: A biosensor (such as an electrochemical-based analytical test strip configured for the determination of glucose in a whole blood sample) includes a substrate, an electrode disposed on the substrate and a uric acid scavenger layer containing polymeric vinyl-4,6-diamino-1,3,5-triazine (polyVDAT) nanoparticles. Aqueous compositions useful in, for example, the manufacturing of such biosensors include polyVDAT nanoparticles and water with the polyVDAT nanoparticles being present as a dispersion in the water. A method for determining an analyte in a bodily fluid sample containing uric acid includes applying a bodily fluid sample containing uric acid to a biosensor such that the bodily fluid sample comes into contact with a uric acid scavenger layer containing polymeric vinyl-4,6-diamino-1,3,5-triazine (polyVDAT) nanoparticles and determining the analyte based on an electronic signal produced by the biosensor.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 29, 2013
    Inventors: Zuifang LIU, Louise SIMPSON, Marco CARDOSI
  • Publication number: 20130220832
    Abstract: The present invention is directed to the detection of target analytes using electronic techniques, particularly AC techniques.
    Type: Application
    Filed: January 31, 2013
    Publication date: August 29, 2013
    Applicant: Osmetch Technology Inc.
    Inventor: Osmetech Technology Inc.
  • Publication number: 20130220834
    Abstract: A method for detecting at least one property of a gas in a measuring gas chamber, in particular for detecting at least one gas component of the gas. The at least one property is determined using at least one electrochemical measuring cell of a sensor element. Temperatures are detected at at least two different locations of the sensor element and used in determining the at least one property.
    Type: Application
    Filed: July 20, 2011
    Publication date: August 29, 2013
    Inventors: Dirk Liemersdorf, Benjamin Sillmann
  • Patent number: 8512547
    Abstract: Disclosed in certain embodiments is a method of determining the individual concentration of different antioxidants of the same class in a sample comprising contacting the sample with an effective amount of phenol; and analyzing the sample by voltammetry.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: August 20, 2013
    Inventor: Robert E. Kauffman
  • Patent number: 8512546
    Abstract: The presence of a select analyte such as glucose in the sample is evaluated in an electrochemical system using a conduction cell-type apparatus. A potential or current is generated between the two electrodes of the cell sufficient to bring about oxidation or reduction of the analyte or of a mediator in an analyte-detection redox system, thereby forming a chemical potential gradient of the analyte or mediator between the two electrodes after the gradient is established, the applied potential or current is discontinued and an analyte-independent signal is obtained from the relaxation of the chemical potential gradient. The analyte-independent signal is used to correct the analyte-dependent signal obtained during application of the potential or current.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: August 20, 2013
    Assignee: AgaMatrix, Inc.
    Inventors: Sridhar G. Iyengar, Ian Harding
  • Publication number: 20130199941
    Abstract: Ion-selective electrodes (ISE's) optimised for analyte determinations and provides methods and apparatus for conditioning ion selective electrodes. The conditioning methods and apparatus are particularly useful for ISE's selective for, difficult to condition, less stable and temperature sensitive products, an are based on a concentration gradient and/or a short exposure to an increased temperature.
    Type: Application
    Filed: March 7, 2011
    Publication date: August 8, 2013
    Applicant: OCTENS BVBA
    Inventor: Hugo Bohets
  • Publication number: 20130193004
    Abstract: A method of testing a system having at least one electrochemical sensor for detecting an analyte gas within a housing of the system, the housing having an inlet, the at least one electrochemical sensor including an electrically active working electrode in fluid connection with the inlet of the system, the method including biasing the electrically active working electrode at a first potential, to detect the analyte gas and biasing the electrically active working electrode at a second potential, different from the first potential, such that the at least one electrochemical sensor is sensitive to a driving force created in the vicinity of the inlet to test at least one transport path of the system. The method may further include creating the driving force in the vicinity of the inlet of the housing of the system and measuring a response of the electrically active working electrode to the driving force.
    Type: Application
    Filed: March 12, 2013
    Publication date: August 1, 2013
    Inventors: Towner B. Scheffler, Michael A. Brown
  • Publication number: 20130193003
    Abstract: A device for sensing a property of a fluid comprising a first substrate having formed thereon a sensor configured in use to come into contact with a fluid in order to sense a property of the fluid, and a wireless transmitter for transmitting data over a wireless data link and a second substrate having formed thereon a wireless receiver for receiving data transmitted over said wireless link by said wireless transmitter. The first substrate is fixed to or within said second substrate. Additionally or alternatively, the device comprises a first substrate defining one or more microfluidic structures for receiving a fluid to be sensed and a second substrate comprising or having attached thereto a multiplicity of fluid sensors, the number of sensors being greater than the number of microfluidic structures.
    Type: Application
    Filed: August 6, 2010
    Publication date: August 1, 2013
    Applicant: DNA Electronics Limited
    Inventors: Sam Reed, Pantelakis Georgiou, Timothy G. Constandinou
  • Patent number: RE44521
    Abstract: An electrochemical test sensor adapted to assist in determining the concentration of analyte in a fluid sample is disclosed. The sensor comprises a base that assists in forming an opening for introducing the fluid sample, a working electrode being coupled to the base, and a counter electrode being coupled to the base, the counter electrode and the working electrode being adapted to be in electrical communication with a detector of electrical current, and a sub-element being coupled to the base. A major portion of the counter electrode is located downstream relative to the opening and at least a portion of the working electrode. The sub-element is located upstream relative to the working electrode such that when electrical communication occurs between only the sub-element and the working electrode there is insufficient flow of electrical current through the detector to determine the concentration of the analyte in the fluid sample.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: October 8, 2013
    Assignee: Bayer HealthCare LLC
    Inventors: Matthew K. Musho, J. Oakey Noell, Andrew J. Edelbrock, Dijia Huang