Assembling Semiconductor Devices, E.g., Packaging , Including Mounting, Encapsulating, Or Treatment Of Packaged Semiconductor (epo) Patents (Class 257/E21.499)

  • Patent number: 8907480
    Abstract: A chip arrangement may include: a first chip including a first contact, a second contact, and a redistribution structure electrically coupling the first contact to the second contact; a second chip including a contact; and a plurality of interconnects electrically coupled to the second contact of the first chip, wherein at least one interconnect of the plurality of interconnects electrically couples the second contact of the first chip to the contact of the second chip.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: December 9, 2014
    Assignee: Intel Mobile Communications GmbH
    Inventors: Thorsten Meyer, Hans-Joachim Barth, Reinhard Mahnkopf, Sven Albers, Andreas Augustin, Christian Mueller
  • Patent number: 8906741
    Abstract: A method for making an electronic package structure is provided which comprises: providing a substrate; providing an inductor module; assembling the inductor module and the substrate so that they define a space; injecting package glue into the space defined by the inductor module and the substrate so as to form a package layer.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: December 9, 2014
    Assignee: Cyntec Co., Ltd.
    Inventors: Bau-Ru Lu, Kai-Peng Chiang, Da-Jung Chen, Tsung-Chan Wu
  • Patent number: 8907481
    Abstract: A stack of a first and second semiconductor structures is formed. Each semiconductor structure includes: a semiconductor bulk, an overlying insulating layer with metal interconnection levels, and a first surface including a conductive area. The first surfaces of semiconductor structures face each other. A first interconnection pillar extends from the first surface of the first semiconductor structure. A housing opens into the first surface of the second semiconductor structure. The housing is configured to receive the first interconnection pillar. A second interconnection pillar protrudes from a second surface of the second semiconductor structure which is opposite the first surface. The second interconnection pillar is in electric contact with the first interconnection pillar.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: December 9, 2014
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventor: Laurent-Luc Chapelon
  • Patent number: 8907469
    Abstract: An integrated circuit package assembly includes a first integrated circuit package and a second integrated circuit package disposed under the first integrated circuit package. Solder bumps are disposed between the first integrated circuit package and the second integrated circuit package providing electrical signal connections between the first integrated circuit package and the second integrated circuit package. At least one support structure is disposed between the first integrated circuit package and the second integrated circuit package to facilitate thermal conduction between the first integrated circuit package and the second integrated circuit package without providing electrical signal connections.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: December 9, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Hsien-Wei Chen
  • Patent number: 8907390
    Abstract: Disclosed herein is a thermally-assisted magnetic tunnel junction structure including a thermal barrier. The thermal barrier is composed of a cermet material in a disordered form such that the thermal barrier has a low thermal conductivity and a high electric conductivity. Compared to conventional magnetic tunnel junction structures, the disclosed structure can be switched faster and has improved compatibility with standard semiconductor fabrication processes.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: December 9, 2014
    Assignee: Crocus Technology Inc.
    Inventor: Jason Reid
  • Patent number: 8907354
    Abstract: The present disclosure relates to an optoelectronic device, in particular to an arrangement for contacting an optoelectronic device. The optoelectronic device (200) includes an elastic electrode (208). A method for forming the elastic electrode (208) is described.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: December 9, 2014
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Andrew Ingle
  • Patent number: 8901679
    Abstract: A micromechanical structure, in particular a sensor arrangement, includes at least one micromechanical functional layer, a CMOS substrate region arranged below the at least one micromechanical functional layer, and an arrangement of one or more contact elements. The CMOS substrate region has at least one configurable circuit arrangement. The arrangement of one or more contact elements is arranged between the at least one micromechanical functional layer and the CMOS substrate region and is electrically connected to the micromechanical functional layer and the circuit arrangement. The configurable circuit arrangement is designed in such a way that the one or more contact elements are configured to be selectively connected to electrical connection lines in the CMOS substrate region.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: December 2, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Johannes Classen, Mirko Hattass, Lars Tebje, Daniel Christoph Meisel
  • Patent number: 8895994
    Abstract: An electronic device may include an elongated dielectric substrate having opposing first and second ends, a plurality of conductive pads longitudinally spaced apart along the elongated dielectric substrate, and a plurality of silicon carbide (SiC) (e.g., PiN) diode dies. Each SiC die may have bottom and top diode terminals and may be mounted on a respective conductive pad with the bottom diode terminal in contact therewith. The electronic device may further include at least one internal wirebond between the corresponding conductive pad of one SiC diode die and the top diode terminal of a next SiC diode die, a first external lead electrically coupled to the top diode terminal of a first SiC die and extending longitudinally outwardly from the first end, and a second external lead electrically coupled to the corresponding contact pad of a last SiC diode die and extending longitudinally outwardly from the second end.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: November 25, 2014
    Assignee: Schlumberger Technology Corporation
    Inventor: Luke Perkins
  • Patent number: 8896110
    Abstract: Embodiments of the present disclosure describe techniques and configurations for paste thermal interface materials (TIMs) and their use in integrated circuit (IC) packages. In some embodiments, an IC package includes an IC component, a heat spreader, and a paste TIM disposed between the die and the heat spreader. The paste TIM may include particles of a metal material distributed through a matrix material, and may have a bond line thickness, after curing, of between approximately 20 microns and approximately 100 microns. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: November 25, 2014
    Assignee: Intel Corporation
    Inventors: Wei Hu, Zhizhong Tang, Syadwad Jain, Rajen S. Sidhu
  • Patent number: 8889483
    Abstract: A method of manufacturing a semiconductor device in one exemplary embodiment includes preparing a first substrate and a second substrate, the first substrate including a bump electrode group formed of bump electrodes arrayed with a certain pitch, the number of bump electrodes along a first direction being larger than the number of bump electrodes along a second direction perpendicular to the first direction; joining the first substrate and the second substrate to each other through the bump electrodes so that a gap is formed between the first substrate and the second substrate; and filling the gap with a mold resin by causing the mold resin to flow in the gap from an edge of the first substrate along the second direction of the bump electrode group.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: November 18, 2014
    Assignee: PS4 Luxco S.A.R.L.
    Inventor: Masahito Yamato
  • Patent number: 8883536
    Abstract: Systems and methods for a pressure sensor are provided, where the pressure sensor comprises a housing having a high side input port that allows a high pressure media to enter a high side of the housing and a low side input port that allows a low pressure media to enter a low side of the housing when the housing is placed in an environment containing the high and low pressure media; a substrate mounted within the housing; a stress isolation member mounted to the substrate; a die stack having sensing circuitry bonded to the stress isolation member; a low side atomic layer deposition (ALD) applied to surfaces, of the substrate, the stress isolation member, and the die stack, exposed to the low side input port; and a high side ALD applied to surfaces, of the stress isolation member and the die stack, exposed to the high side input port.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: November 11, 2014
    Assignee: Honeywell International Inc
    Inventor: Gregory C. Brown
  • Patent number: 8884343
    Abstract: A system in package and a method for manufacturing the same is provided. The system in package comprises a laminate body having a substrate arranged inside a laminate body. A semiconductor die is embedded in the laminate body and the semiconductor is bonded to contact pads of the substrate by help of a sintered bonding layer, which is made from a sinter paste. Lamination of the substrate and further layers providing the laminate body and sintering of the sinter paste may be performed in a single and common curing step.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: November 11, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Bernhard Lange, Juergen Neuhaeusler
  • Patent number: 8884347
    Abstract: The present disclosure provides a method of manufacturing a photoelectric conversion device, including, a first step of forming a plurality of photoelectric conversion regions on a surface on one side of a semiconductor wafer, a second step of preparing a light-blocking wafer having insertion openings, a third step of bonding the one-side surface of the semiconductor wafer and a surface on the opposite side to a surface on the one side of the light-blocking wafer to each other to form a bonded wafer body, and a fourth step of dividing the bonded wafer body in peripheries of the photoelectric conversion regions, to obtain bonded-body chips each having the photoelectric conversion region.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: November 11, 2014
    Assignee: Sony Corporation
    Inventor: Yasuhide Nihei
  • Patent number: 8884314
    Abstract: The present disclosure is directed to circuitry configurable based on device orientation. Example circuitry may comprise at least one device location and configurable conductors. The at least one device location may include at least two conductive pads onto which a device may be populated by a manufacturing process. The configurable conductors may be coupled to each of the at least two conductive pads. The configurable conductors may be configured by adding conductive material to at least one configurable conductor or subtracting at least part of at least one configurable conductor. For example, conductive material may be added to close a space between two segments of a configurable conductor to form a conduction path. Alternatively, at least part of at least one of a plurality of configurable conductors coupled to a conductive pad may be subtracted (e.g., cut) to stop conduction in the at least one configurable conductor.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: November 11, 2014
    Assignee: OSRAM SYLVANIA Inc.
    Inventor: Jeffery J. Serre
  • Patent number: 8877567
    Abstract: A semiconductor device has an interposer frame having a die attach area. A uniform height insulating layer is formed over the interposer frame at corners of the die attach area. The insulating layer can be formed as rectangular or circular pillars at the corners of the die attach area. The insulating layer can also be formed in a central region of the die attach area. A semiconductor die has a plurality of bumps formed over an active surface of the semiconductor die. The bumps can have a non-fusible portion and fusible portion. The semiconductor die is mounted over the insulating layer which provides a uniform standoff distance between the semiconductor die and interposer frame. The bumps of the semiconductor die are bonded to the interposer frame. An encapsulant is deposited over the semiconductor die and interposer frame and between the semiconductor die and interposer frame.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: November 4, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: KyungHoon Lee, Soo Moon Park, SeungWon Kim
  • Patent number: 8878216
    Abstract: A light emitting diode (LED) module includes a substrate, an LED disposed on the substrate, a phosphor layer disposed on the LED, and a lens disposed on the substrate. The substrate has a recess defined therein. The lens is fastened to the substrate through the recess. A manufacturing method for the LED includes forming the recess in the substrate, mounting the LED on the substrate, forming the phosphor layer on the LED, and forming the lens directly on the substrate such that the lens is fastened to the substrate through the recess.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: November 4, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jae Sung You
  • Patent number: 8878367
    Abstract: A substrate structure with through vias is provided. The substrate structure with through vias includes a semiconductor substrate having a back surface and a via penetrating the back surface, a metal layer, a first insulating layer and a second insulating layer. The first insulating layer is formed on the back surface of the semiconductor substrate and has an opening connected to the through via. The second insulating layer is formed on the first insulating layer and has a portion extending into the opening and the via to form a trench insulating layer. The bottom of the trench insulating layer is etched back to form a footing portion at the corner of the via. The footing portion has a height less than a total height of the first and second insulating layers.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: November 4, 2014
    Assignee: Xintec Inc.
    Inventors: Chia-Sheng Lin, Chien-Hui Chen, Bing-Siang Chen, Tzu-Hsiang Hung
  • Patent number: 8871640
    Abstract: A method of manufacturing a semiconductor chip including an integrated circuit and a through-electrode penetrating a semiconductor layer includes the steps of preparing a first substrate including a release layer and a semiconductor layer formed on the release layer; forming an integrated circuit in the semiconductor layer; forming, in the semiconductor layer, a hole or groove having a depth that does not reach the release layer; filling the hole or the groove with an electrical conductor; bonding a second substrate to the semiconductor layer to form a bonded structure; separating the bonded structure at the release layer to prepare the second substrate to which the semiconductor layer is transferred; and removing at least a portion of the reverse surface side of the semiconductor layer exposed by the separation to expose the bottom of the electrical conductor.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: October 28, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takao Yonehara, Kiyofumi Sakaguchi, Nobuo Kawase, Kenji Nakagawa
  • Patent number: 8872180
    Abstract: A production method for a liquid crystal display device having a plurality of thin film transistors (TFTs) including reflection sections disposed to correspond to a plurality of pixels includes: a step of forming on a substrate a metal layer having apertures; a step of forming a semiconductor layer on the metal layer; a step of forming a protection layer on the semiconductor layer; a step of forming a resist layer on the protection layer; a photolithography step of irradiating the resist layer with light through the metal layer to pattern the protection layer by photolithography technique; and a step of stacking a reflective layer on the patterned protection layer. A plurality of bumps are formed from the protection layer in the photolithography step, and a plurality of bumps corresponding to the plurality of bumps of the protection layer are formed on the reflective layer.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: October 28, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Katsunori Misaki
  • Patent number: 8872319
    Abstract: A stacked package structure is provided. The stacked package structure includes a stacked package including a lower semiconductor package, an upper semiconductor package disposed on the lower semiconductor package and spaced a predetermined distance apart from the lower semiconductor package, an inter-package connecting portion electrically connecting the lower semiconductor package and the upper semiconductor package while supporting a space therebetween, and an insulation layer disposed at least outside the inter-package connecting portion and filling the space between the lower semiconductor package and the upper semiconductor package, and an electromagnetic shielding layer surrounding lateral and top surfaces of the stacked package.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: October 28, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Kim, Hee-Seok Lee, Seong-Ho Shin, Se-Ho You, Yun-Hee Lee
  • Patent number: 8866294
    Abstract: A semiconductor device has a semiconductor die with a plurality of bumps formed over a surface of the first semiconductor die. A penetrable adhesive layer is formed over a temporary carrier. The adhesive layer can include a plurality of slots. The semiconductor die is mounted to the carrier by embedding the bumps into the penetrable adhesive layer. The semiconductor die and interconnect structure can be separated by a gap. An encapsulant is deposited over the first semiconductor die. The bumps embedded into the penetrable adhesive layer reduce shifting of the first semiconductor die while depositing the encapsulant. The carrier is removed. An interconnect structure is formed over the semiconductor die. The interconnect structure is electrically connected to the bumps. A thermally conductive bump is formed over the semiconductor die, and a heat sink is mounted to the interconnect structure and thermally connected to the thermally conductive bump.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: October 21, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Yaojian Lin, Jun Mo Koo
  • Patent number: 8866302
    Abstract: A device includes a first semiconductor chip with a first contact pad on a first face and a second semiconductor chip with a first contact pad on a first face. The second semiconductor chip is placed over the first semiconductor chip, wherein the first face of the first semiconductor chip faces the first face of the second semiconductor chip. Exactly one layer of an electrically conductive material is arranged between the first semiconductor chip and the second semiconductor chip. The exactly one layer of an electrically conductive material electrically couples the first contact pad of the first semiconductor chip to the first contact pad of the second semiconductor chip.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: October 21, 2014
    Assignee: Infineon Technologies AG
    Inventors: Henrik Ewe, Joachim Mahler, Anton Prueckl, Stefan Landau
  • Patent number: 8865520
    Abstract: The present invention provides a temporary carrier bonding and detaching process. A first surface of a semiconductor wafer is mounted on a first carrier by a first adhesive layer, and a first isolation coating disposed between the first adhesive layer and the first carrier. Then, a second carrier is mounted on the second surface of the semiconductor wafer. The first carrier is detached. Then, the first surface of the semiconductor wafer is mounted on a film frame. The second carrier is detached. The method of the present invention utilizes the second carrier to support and protect the semiconductor wafer, after which the first carrier is detached. Therefore, the semiconductor wafer will not be damaged or broken, thereby improving the yield rate of the semiconductor process. Furthermore, the simplicity of the detaching method for the first carrier allows for improvement in efficiency of the semiconductor process.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: October 21, 2014
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Kuo-Pin Yang, Wei-Min Hsiao, Cheng-Hui Hung
  • Patent number: 8859337
    Abstract: Embodiments described herein provide a chip, comprising a first device on a substrate and a second device on the substrate. The chip further comprises a heat distribution structure in thermal proximity to the first device and the second device, wherein the heat distribution structure is thermally isolated and reduces a thermal gradient between the first device and the second device.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: October 14, 2014
    Assignee: Soitec
    Inventors: Stephen J Gaul, Steven Howard Voldman, Jean-Michel Tschann
  • Patent number: 8859396
    Abstract: In one embodiment, a method of singulating semiconductor die from a semiconductor wafer includes forming a material on a surface of a semiconductor wafer and reducing a thickness of portions of the material. Preferably, the thickness of the material is reduced near where singulation openings are to be formed in the semiconductor wafer.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: October 14, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Gordon M. Grivna, John M. Parsey, Jr.
  • Patent number: 8859394
    Abstract: A method of fabricating a composite semiconductor structure includes providing an SOI substrate including a plurality of silicon-based devices, providing a compound semiconductor substrate including a plurality of photonic devices, and dicing the compound semiconductor substrate to provide a plurality of photonic dies. Each die includes one or more of the plurality of photonics devices. The method also includes providing an assembly substrate having a base layer and a device layer including a plurality of CMOS devices, mounting the plurality of photonic dies on predetermined portions of the assembly substrate, and aligning the SOI substrate and the assembly substrate. The method further includes joining the SOI substrate and the assembly substrate to form a composite substrate structure and removing at least the base layer of the assembly substrate from the composite substrate structure.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: October 14, 2014
    Assignee: Skorpios Technologies, Inc.
    Inventors: John Dallesasse, Stephen B. Krasulick, Timothy Creazzo, Elton Marchena
  • Patent number: 8859333
    Abstract: An IC package that is suitable for surface mounting arrangements includes a heat spreader device that is coupled to a bottom portion of the package below the IC die. Coupling the heat spreader device to the bottom portion of the package reduces or eliminates the possibility that placement of the heat spreader device will result in the molding compound bleeding on top of the heat spreader device, and delamination at the footings of the heat spreader device that can cause the package to delaminate, or “popcorn”.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: October 14, 2014
    Assignee: LSI Corporation
    Inventors: Kok Hua Simon Chua, Budi Njoman
  • Patent number: 8852999
    Abstract: A system-in-a-package based flash memory card including an integrated circuit package occupying a small overall area within the card and cut to conform to the shape of a lid for the card. An integrated circuit may be cut from a panel into a shape that fits within and conforms to the shape of lids for a finished memory card, such as for example an SD Card. The integrated circuit package may be a system-in-a-package, a multi-chip module, or other arrangement where a complete electronic system is formed in a single package.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: October 7, 2014
    Assignee: SanDisk Technologies Inc.
    Inventors: Hem Takiar, Robert C. Miller, Warren Middlekauff, Michael W. Patterson, Shrikar Bhagath
  • Patent number: 8853011
    Abstract: A repairing method, repairing device and repairing structure for repairing a signal line of an array substrate having the disconnected defect, including: setting a repairing route according to a position of the disconnected defect and determining a position at which a filling portion is required to be formed according to the repairing route; forming the filling portion at the position at which the filling portion is required to be formed; and forming a repairing line along the repairing route. By detecting the repairing route before repairing the disconnected defect by forming the filling portion according to the repairing route, the present disclosure can avoid the disconnection of the repairing line caused by great height differences of the surface under the repairing line and improve the repairing success rate of the disconnected defect.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: October 7, 2014
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd.
    Inventors: Wen-da Cheng, Chujen Wu
  • Patent number: 8852970
    Abstract: A method for mounting a luminescent device having a mount layer on a substrate, comprising the steps of coating a metallic nano-particle paste on the substrate, disposing the mount layer of the luminescent device on the metallic nano-particle paste, and heating the mount layer and the metallic nano-particle paste to form an alloy, thereby bonding the luminescent device and the substrate.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: October 7, 2014
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Shota Shimonishi, Hiroyuki Tajima, Yosuke Tsuchiya
  • Patent number: 8853845
    Abstract: A component including at least one active element hermetically encapsulated in a cavity formed between a support and a cover, in which the support and the cover are made from an electrically conductive material, and are insulated electrically from one another, and include a first electrical connection between the active element and the support, and a second electrical connection, separate from the first connection, between the active element and the cover, and in which: the active element is securely attached to the support through a dielectric layer positioned between the support and the active element, and between the support and the cover; the second electrical connection includes a second portion of electrically conductive material electrically connected to the cover, positioned on the dielectric layer and electrically in contact with an electrically conductive sealing bead providing hermetic secure attachment of the cover to the support.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: October 7, 2014
    Assignees: Commissariat a l'energie atomique et aux energies alternatives, Sorin CRM S.A.S.
    Inventors: Jean-Charles Souriau, Guy-Michel Parat, Renzo Dal Molin
  • Patent number: 8853000
    Abstract: A method for manufacturing a package on package structure includes the steps of: providing a connection substrate comprising a main body and electrically conductive posts, the main body comprising a first surface and an opposite second surface, each electrically conductive post passing through the first and second surfaces, and each end of the two ends of the electrically conductive post protruding from the main body; arranging a first package device on a side of the first surface of the connection substrate, arranging a package adhesive on a side of the second surface of the connection substrate, thereby obtaining a semi-finished package on package structure; and arranging a second package device on a side of the package adhesive furthest from the first package device, thereby obtaining a package on package structure.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: October 7, 2014
    Assignees: HongQiSheng Precision Electronics (QiHuangDao) Co., Ltd., Zhen Ding Technology Co., Ltd.
    Inventors: Chien-Chih Chen, Hong-Xia Shi, Shih-Ping Hsu
  • Patent number: 8851358
    Abstract: One plate-like member and the other plate-like member to be aligned with each other are provided with guide holes and guide portions to be received in the guide holes, respectively. The plate-like members are aligned appropriately, and in a state in which this alignment is held, the guide portions are formed on land portions provided on the other plate-like member so as to be aligned with the guide holes. Accordingly, regardless of presence/absence or size of a process error in the guide holes, the guide portions appropriate to the respective guide holes can be formed. Consequently, by aligning the guide portions with the guide holes, the plate-like members can be aligned appropriately without relative fine adjustment between the members.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: October 7, 2014
    Assignee: Kabushiki Kaisha Nihon Micronics
    Inventors: Tomokazu Saito, Seito Moriyama
  • Patent number: 8847379
    Abstract: A method for manufacturing a package comprises a first step of forming a metal pattern including a frame and a plurality of leads extending inward from the frame, a second step of molding a resin pattern including a first resin portion which holds the plurality of leads from an inner side thereof, and second resin portions which cover bottom surfaces of peripheral portions, adjacent to portions to be removed, in the plurality of leads while exposing bottom surfaces of the portions to be removed in the plurality of leads, so as to hold the plurality of leads from a lower side thereof, and a third step of cutting the plurality of leads into a plurality of first leads and a plurality of second leads by removing the portions to be removed in the plurality of leads while the resin pattern keeps holding the peripheral portions in the plurality of leads.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: September 30, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Koji Ono
  • Patent number: 8846445
    Abstract: A system for connecting a first chip to a second chip having a post on the first chip having a first metallic material, a recessed wall within the second chip and defining a well within the second chip, a conductive diffusion layer material on a surface of the recessed wall within the well, and a malleable electrically conductive material on the post, the post being dimensioned for insertion into the well such that the malleable electrically conductive material will deform within the well and, upon heating to at least a tack temperature for the malleable, electrically conductive material, will form an electrically conductive tack connection with the diffusion layer to create an electrically conductive path between the first chip and the second chip.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: September 30, 2014
    Assignee: Cufer Asset Ltd. L.L.C.
    Inventor: John Trezza
  • Patent number: 8841173
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a leadframe with a grid lead and a support pad; connecting a redistribution layer to the grid lead, the redistribution layer over the support pad; mounting an integrated circuit over the redistribution layer; applying an encapsulation on the redistribution layer, the redistribution layer in an interior area of the leadframe and the interior area under the integrated circuit; forming a support pad residue on the bottom surface of the redistribution layer by removing the support pad under the encapsulation and the interior redistribution layer; and forming an insulation layer on the support pad residue and the grid lead.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: September 23, 2014
    Assignee: STATS ChipPAC Ltd.
    Inventors: Byung Tai Do, Arnel Senosa Trasporto, Linda Pei Ee Chua
  • Patent number: 8841166
    Abstract: Provided is a resin sealed semiconductor device with improved reliability. After positioning a cap (lid) so as to cover semiconductor chips and wires, resin is supplied into a space formed by the cap, so that a sealing body is formed to cover the semiconductor chips and the wires. In the step of forming the sealing body, the resin is supplied from an opening formed at a corner of the cap in the planar view. The sealing body is exposed at the corner of the cap, so that the exposed part of the sealing body can be kept away from the wires.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: September 23, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Noriyuki Takahashi
  • Patent number: 8835248
    Abstract: Techniques for fabricating metal lines in semiconductor systems are disclosed. The metal may be tungsten. A hybrid Chemical Vapor Deposition (CVD)/Physical Vapor Deposition (PVD) process may be used. A layer of tungsten may be formed using CVD. This CVD layer may be formed over a barrier layer, such as, but not limited to, TiN or WN. This CVD layer may completely fill some feature such as a trench or via. Then, a layer of tungsten may be formed over the CVD layer using PVD. The layers of tungsten may then be etched to form a wire or line. Techniques for forming metal wires using a hybrid CVD/PVD process may provide for low resistivity with a barrier metal, low surface roughness, and good gap filling.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: September 16, 2014
    Assignee: SanDisk Technologies Inc.
    Inventor: Naoki Takeguchi
  • Patent number: 8836073
    Abstract: An Integrated Circuit device including: a first layer of first transistors; a first metal layer overlaying the first transistors and providing at least one connection to the first transistors; a second metal layer overlaying the first metal layer; and a second layer of second transistors overlaying the second metal layer, where the second metal layer is connected to provide power to at least one of the second transistors.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: September 16, 2014
    Assignee: Monolithic 3D Inc.
    Inventors: Zvi Or-Bach, Deepak Sekar, Brian Cronquist
  • Patent number: 8835223
    Abstract: An assembly and method of making same are provided. The assembly can be formed by juxtaposing a first electrically conductive element overlying a major surface of a first semiconductor element with an electrically conductive pad exposed at a front surface of a second semiconductor element. An opening can be formed extending through the conductive pad of the second semiconductor element and exposing a surface of the first conductive element. The opening may alternatively be formed extending through the first conductive element. A second electrically conductive element can be formed extending at least within the opening and electrically contacting the conductive pad and the first conductive element. A third semiconductor element can be positioned in a similar manner with respect to the second semiconductor element.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: September 16, 2014
    Assignee: Tessera, Inc.
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Craig Mitchell, Piyush Savalia
  • Patent number: 8835220
    Abstract: In some embodiments, selective electroless plating for electronic substrates is presented. In this regard, a method is introduced including receiving a coreless substrate strip, forming a stiffening mold on a backside of the coreless substrate strip adjacent to sites where solder balls are to be attached, and attaching solder balls to the backside of the coreless substrate strip amongst the stiffening mold. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: September 16, 2014
    Assignee: Intel Corporation
    Inventors: Huay Huay Sim, Choong Kooi Chee, Kein Fee Liew
  • Patent number: 8836105
    Abstract: A method of assembling a semiconductor device includes providing a substrate having an array of substrate elements linked by substrate corner elements and separated by slots extending between the corner elements. Semiconductor dies are positioned on the substrate elements. A cap, frame and contact structure is provided that has a corresponding array of caps supported by corner legs linking the caps to frame corner elements, frame elements linking the frame corner elements, and sets of electrical contact elements supported by the frame elements. The cap, frame and contact structure is fitted on the substrate with the caps extending over corresponding dies, the frame corner elements extending over the substrate corner elements, and the sets of electrical contact elements disposed in the slots. The dies are connected electrically with the electrical contact elements and the assembly is encapsulated and singulated. Singulating removes the frame elements.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: September 16, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Baoguan Yin, Junhua Luo, Deguo Sun
  • Publication number: 20140252631
    Abstract: A semiconductor wafer contains a plurality of semiconductor die each having a plurality of contact pads. A sacrificial adhesive is deposited over the contact pads. Alternatively, the sacrificial adhesive is deposited over the carrier. An underfill material can be formed between the contact pads. The semiconductor wafer is singulated to separate the semiconductor die. The semiconductor die is mounted to a temporary carrier such that the sacrificial adhesive is disposed between the contact pads and temporary carrier. An encapsulant is deposited over the semiconductor die and carrier. The carrier and sacrificial adhesive is removed to leave a via over the contact pads. An interconnect structure is formed over the encapsulant. The interconnect structure includes a conductive layer which extends into the via for electrical connection to the contact pads. The semiconductor die is offset from the interconnect structure by a height of the sacrificial adhesive.
    Type: Application
    Filed: June 4, 2010
    Publication date: September 11, 2014
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Reza A. Pagaila, Yaojian Lin, Jun Mo Koo
  • Patent number: 8828753
    Abstract: A method for producing a light emitting diode device includes the steps of preparing a board mounted with a light emitting diode; preparing a hemispherical lens molding die; preparing a light emitting diode encapsulating material which includes a light emitting diode encapsulating layer and a phosphor layer laminated thereon, and in which both layers are prepared from a resin before final curing; and disposing the light emitting diode encapsulating material between the board and the lens molding die so that the phosphor layer is opposed to the lens molding die to be compressively molded, so that the light emitting diode is directly encapsulated by the hemispherical light emitting diode encapsulating layer and the phosphor layer is disposed on the hemispherical surface thereof.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: September 9, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Yuki Ebe, Yasunari Ooyabu
  • Patent number: 8829629
    Abstract: A capacitance type gyro sensor includes a semiconductor substrate, a first electrode integrally including a first base portion and first comb tooth portions and a second electrode integrally including a second base portion and second comb tooth portions, formed by processing the surface portion of the semiconductor substrate. The first electrode has first drive portions that extend from opposed portions opposed to the respective second comb tooth portions on the first base portion toward the respective second comb tooth portions. The second electrode has second drive portions formed on the tip end portions of the respective second comb tooth portions opposed to the respective first drive portions. The first drive portions and the second drive portions engage with each other at an interval like comb teeth.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: September 9, 2014
    Assignee: Rohm Co., Ltd.
    Inventors: Goro Nakatani, Toma Fujita
  • Patent number: 8829690
    Abstract: A system and method for chip package fabrication is disclosed. The chip package includes a base re-distribution layer having an opening formed therein, an adhesive layer having a window formed therein free of adhesive material, and a die affixed to the base re-distribution layer by way of the adhesive layer, the die being aligned with the window such that only a perimeter of the die contacts the adhesive layer. A shield element is positioned between the base re-distribution layer and adhesive layer that is generally aligned with the opening formed in the base re-distribution layer and the window of the adhesive layer such that only a perimeter of the shield element is attached to the adhesive layer. The shield element is separated from the die by an air gap and is configured to be selectively removable from the adhesive layer so as to expose the front surface of the die.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: September 9, 2014
    Assignee: General Electric Company
    Inventors: Paul Alan McConnelee, Kevin Matthew Durocher, Scott Smith, Laura A. Principe
  • Patent number: 8822274
    Abstract: A method of assembling a packaged integrated circuit (IC) includes printing a viscous dielectric polymerizable material onto a die pad of a leadframe having metal terminals positioned outside the die pad. An IC die having a top side including a plurality of bond pads is placed with its bottom side onto the viscous dielectric polymerizable material. Bond wires are wire bonded between the plurality of bond pads and the metal terminals of the leadframe.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: September 2, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Wan Mohd Misuari Suleiman, Azdhar Dahalan
  • Patent number: 8822266
    Abstract: Various apparatuses and methods for forming integrated circuit packages are described. One aspect of the invention pertains to an integrated circuit package in which one or more integrated circuits are embedded in a substrate and covered with a layer of photo-imageable epoxy. The substrate can be made of various materials, including silicon, quartz and glass. An integrated circuit is positioned within a cavity in the top surface of the substrate. The epoxy layer is formed over the top surface of the substrate and the active face of the integrated circuit. An interconnect layer is formed over the epoxy layer and is electrically coupled with the integrated circuit.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: September 2, 2014
    Assignee: National Semiconductor Corporation
    Inventors: Peter Smeys, Peter Johnson, Peter Deane, Reda R. Razouk
  • Patent number: 8822258
    Abstract: A wafer-level bonding method for fabricating wafer level camera lenses is disclosed. The method includes: providing a lens wafer including lenses arranged in an array and a sensor wafer including sensors arranged in an array; measuring and analyzing an FFL of each lens to obtain a corresponding FFL compensation value for each lens; forming a thin transparent film (TTF) on each sensor of the sensor wafer, and the thickness of TTF is determined by the FFL compensation value of the corresponding lens; aligning and bonding the lens wafer with the sensor wafer having TTFs formed thereon. Since the focal length of each lens is adjusted to compensate the FFL of the lens by adding a TTF of transparent optical material with an index of refraction that is similar to the index of refraction of the sensor cover glass, the FFL variation of each camera lens can be reduced.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: September 2, 2014
    Assignee: OmniVision Technologies (Shanghai) Co., Ltd.
    Inventor: Regis Fan
  • Patent number: RE45286
    Abstract: An embedded MEMS semiconductor substrate is set forth and can be a starting material for subsequent semiconductor device processing. A MEMS device is formed in a semiconductor substrate, including at least one MEMS electrode and a buried silicon dioxide sacrificial layer has been applied for releasing the MEMS. A planarizing layer is applied over the substrate, MEMS device and MEMS electrode. A polysilicon protection layer is applied over the planarizing layer. A silicon nitride capping layer is applied over the polysilicon protection layer. A polsilicon seed layer is applied over the polysilicon nitride capping layer. The MEMS device is released by removing at least a portion of the buried silicon dioxide sacrificial layer and an epitaxial layer is grown over the polysilicon seed layer to be used for subsequent semiconductor wafer processing.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: December 9, 2014
    Assignee: STMicroelectronics, Inc.
    Inventors: Olivier Le Neel, Peyman Sana, Loi Nguyen, Venkatesh Mohanakrishnaswamy