Semiconductors Devices Adapted For Rectifying, Amplifying, Oscillating, Or Switching, Capacitors, Or Resistors With At Least One Potential-jump Barrier Or Surface Barrier (epo) Patents (Class 257/E29.001)

  • Publication number: 20100127344
    Abstract: An apparatus and method for providing a reliable connection to an internal node from the backside of an integrated circuit using focused ion beam (“FIB”) milling are disclosed herein. In accordance with at least some embodiments, an integrated circuit includes an isolation region, an active region, a first contact, and a metal layer. The isolation region separates adjacent integrated circuit devices. The first contact is disposed between the isolation region and the metal layer. The first contact is electrically connected to the active region. A dummy structure is disposed between the isolation region and the first contact. A FIB via is milled through the isolation region and the dummy structure to the first contact to establish an electrical connection with active region through the via.
    Type: Application
    Filed: November 21, 2008
    Publication date: May 27, 2010
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kendall S. WILLS, Reena A. CHANPURA
  • Publication number: 20100127233
    Abstract: The present disclosure provides a method for controlled formation of the resistive switching layer in a resistive switching device. The method comprises providing a substrate (2) comprising the bottom electrode (10), providing on the substrate a dielectric layer (4) comprising a recess (7) containing the metal for forming the resistive layer (11), providing on the substrate a dielectric layer (5) comprising an opening (8) exposing the metal of the recess, and forming the resistive layer in the recess and in the opening.
    Type: Application
    Filed: August 31, 2007
    Publication date: May 27, 2010
    Applicants: NXP, B.V., INTERUNIVERSITAIR MICROELEKTRONICA CENTRUM (IMEC)
    Inventors: Ludovic Goux, Dirk Wouters
  • Publication number: 20100127345
    Abstract: 3-D ICs (18, 18?, 90) with integrated passive devices (IPDs) (38) having reduced cross-talk and high packing density are provided by stacking separately prefabricated substrates (20, 30, 34) coupled by through-substrate-vias (TSVs) (40). An active device (AD) substrate (20) has contacts on its upper portion (26). An isolator substrate (30) is bonded to the AD substrate (20) so that TSVs (4030) in the isolator substrate (30) are coupled to the contacts (26) on the AD substrate (20), and desirably has an interconnect zone (44) on its upper surface. An IPD substrate (34) is bonded to the isolator substrate (30) so that TSVs (4034) therein are coupled to the interconnect zone (44) on the isolator substrate (30) and/or TSVs (4030) therein. The IPDs (38) are formed on its upper surface and coupled by TSVs (4034, 4030) in the IPD (34) and isolator (30) substrates to devices (26) in the AD substrate (20).
    Type: Application
    Filed: November 25, 2008
    Publication date: May 27, 2010
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Paul W. Sanders, Robert E. Jones, Michael F. Petras, Chandrasekaram Ramiah
  • Patent number: 7723850
    Abstract: A method of forming air gaps within a solid structure is provided. In this method, a sacrificial material is covered by an overlayer. The sacrificial material is then removed through the overlayer to leave an air gap. Such air gaps are particularly useful as insulation between metal lines in an electronic device such as an electrical interconnect structure. Structures containing air gaps are also provided.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: May 25, 2010
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Michael K. Gallagher, Dana A. Gronbeck, Timothy G. Adams, Jeffrey M. Calvert
  • Publication number: 20100124114
    Abstract: Provided is a semiconductor device comprising: a plurality of bit line patterns; a plurality of pad patterns that are respectively connected to the plurality of bit line patterns; and at least one contact that is formed on each of the plurality of pad patterns, wherein the pitch of the plurality of pad patterns is greater than the pitch of the plurality of bit line patterns. The bit line patterns may be formed using a double patterning technology (DPT).
    Type: Application
    Filed: July 7, 2009
    Publication date: May 20, 2010
    Inventors: Pan-suk Kwak, Doo-youl Lee
  • Patent number: 7719112
    Abstract: An integrated circuit chip comprising a bond wire and a mass of magnetic material provided on the bond wire, wherein the mass of magnetic material increases the inductance of the bond wire.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: May 18, 2010
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Zheng John Shen
  • Publication number: 20100117160
    Abstract: Polarity dependent switches for resistive sense memory are described. A memory unit includes a resistive sense memory cell configured to switch between a high resistance state and a low resistance state upon passing a current through the resistive sense memory cell and a semiconductor transistor in electrical connection with the resistive sense memory cell. The semiconductor transistor includes a gate element formed on a substrate. The semiconductor transistor includes a source contact and a bit contact. The gate element electrically connects the source contact and the bit contact. The resistive sense memory cell electrically connects to the bit contact. The source contact and the bit contact are asymmetrically implanted with dopant material.
    Type: Application
    Filed: March 20, 2009
    Publication date: May 13, 2010
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Chulmin Jung, Maroun Georges Khoury, Yong Lu, Young Pil Kim
  • Patent number: 7713792
    Abstract: A fuse structure, a method for fabricating the fuse structure and a method for programming a fuse within the fuse structure each use a fuse material layer that is used as a fuse, and located upon a monocrystalline semiconductor material layer in turn located over a substrate. At least part of the monocrystalline semiconductor material layer is separated from the substrate by a gap. Use of the monocrystalline semiconductor material layer, as well as the gap, provides for enhanced uniformity and reproducibility when programming the fuse.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: May 11, 2010
    Assignee: International Business Machines Corporation
    Inventors: Anil Kumar Chinthakindi, Deok-Kee Kim, Chandrasekharan Kothandaraman, Byeongju Park
  • Patent number: 7714317
    Abstract: In some embodiments of the invention, encapsulated semiconducting nanomaterials are described. In certain embodiments the nanostructures described are semiconducting nanomaterials encapsulated with ordered carbon shells. In some aspects a method for producing encapsulated semiconducting nanomaterials is disclosed. In some embodiments applications of encapsulated semiconducting nanomaterials are described.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: May 11, 2010
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Eli Anguelova Sutter, Peter Werner Sutter
  • Publication number: 20100109127
    Abstract: Some embodiments include methods of reflecting ions off of vertical regions of photoresist mask sidewalls such that the ions impact foot regions along the bottom of the photoresist mask sidewalls and remove at least the majority of the foot regions. In some embodiments, trenches may be formed adjacent the photoresist mask sidewalls in a material that is beneath the photoresist mask. Another material may be formed to have projections extending into the trenches. Such projections may assist in anchoring said other material to the material that is beneath the photoresist mask. In some embodiments, the photoresist mask is utilized for patterning flash memory structures. Some embodiments include semiconductor constructions having materials anchored to underlying materials through fang-like projections.
    Type: Application
    Filed: January 14, 2010
    Publication date: May 6, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Mark Kiehlbauch
  • Publication number: 20100109121
    Abstract: A micro electromechanical system and a fabrication method thereof, which has trenches formed on a substrate to prevent circuits from interfering each other, and to prevent over-etching of the substrate when releasing a microstructure.
    Type: Application
    Filed: January 5, 2010
    Publication date: May 6, 2010
    Applicant: MEMSMART SEMICONDUCTOR CORP.
    Inventors: Li-Ken YEH, I-Hsiang CHIU
  • Publication number: 20100109115
    Abstract: Integrated circuits are made by bonding to a substrate one or more slices of material, and forming circuits using the slices of material.
    Type: Application
    Filed: November 3, 2008
    Publication date: May 6, 2010
    Inventor: Michael J. Ure
  • Publication number: 20100102390
    Abstract: In a gated diode ESD protection structure, the gate is biased to a voltage higher than ground and gate size is reduced while ensuring adequate spacing between p+ and n+ regions of the diode by blocking at least one of n-lightly doped region and p-lightly doped region.
    Type: Application
    Filed: October 27, 2008
    Publication date: April 29, 2010
    Inventors: Vladislav Vashchenko, Konstantin G. Korablev
  • Publication number: 20100102417
    Abstract: Embodiments provide a method for depositing or forming titanium aluminum nitride materials during a vapor deposition process, such as atomic layer deposition (ALD) or plasma-enhanced ALD (PE-ALD). In some embodiments, a titanium aluminum nitride material is formed by sequentially exposing a substrate to a titanium precursor and a nitrogen plasma to form a titanium nitride layer, exposing the titanium nitride layer to a plasma treatment process, and exposing the titanium nitride layer to an aluminum precursor while depositing an aluminum layer thereon. The process may be repeated multiple times to deposit a plurality of titanium nitride and aluminum layers. Subsequently, the substrate may be annealed to form the titanium aluminum nitride material from the plurality of layers. In other embodiments, the titanium aluminum nitride material may be formed by sequentially exposing the substrate to the nitrogen plasma and a deposition gas which contains the titanium and aluminum precursors.
    Type: Application
    Filed: October 27, 2009
    Publication date: April 29, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Seshadri Ganguli, Srinivas Gandikota, Sang Ho Yu, Luis Felipe Hakim
  • Publication number: 20100102308
    Abstract: Programmable metallization memory cells include an electrochemically active electrode and an inert electrode and an ion conductor solid electrolyte material between the electrochemically active electrode and the inert electrode. An electrically insulating oxide layer separates the ion conductor solid electrolyte material from the electrochemically active electrode.
    Type: Application
    Filed: February 23, 2009
    Publication date: April 29, 2010
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Ming Sun, Michael Xuefei Tang, Insik Jin, Venkatram Venkatasamy, Philip George Pitcher, Nurul Amin
  • Patent number: 7704859
    Abstract: Provided is an electro-optical apparatus including a first thin-film transistor having a first gate electrode, a first gate insulating layer and a first active layer, which are respectively formed of a conductive film, an insulating film and a semiconductor film, in a pixel region of a device substrate, the apparatus including: a second thin-film transistor having a first gate electrode formed of the conductive film, a second gate insulating layer formed by removing a portion of the insulating film in a thickness direction and a second active layer formed of the semiconductor film, in a region other than the pixel region of the device substrate.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: April 27, 2010
    Assignee: Epson Imaging Devices Corporation
    Inventor: Takashi Sato
  • Patent number: 7701034
    Abstract: An embodiment of the invention provides a semiconductor integrated circuit device having a dummy pattern for improving micro-loading effects. The device comprises an active region in a substrate and an isolation region in the substrate adjacent the active region. A plurality of dummy patterns are formed over the isolation region, wherein each dummy pattern is aligned parallel to and lengthwise dimension of the active region. The dummy patterns may have non-uniform spacing or non-uniform aspect ratios. The dummy pattern may have, in plan view, a rectangular shape, wherein its length is greater than the lengthwise dimension of the active region. The spacing between the dummy pattern and the active region may be less than about 1500 nm.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: April 20, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry Chuang, Kong-Beng Thei, Cheng-Cheng Kuo
  • Publication number: 20100090187
    Abstract: Disclosed is a resistive memory device. In the resistive memory device, at least one variable resistance region and at least one switching device may be horizontally apart from each other, rather than being disposed on the same vertical axis. At least one intermediate electrode, which electrically connects the at least one variable resistance region and the at least one switching device, may be between the at least one variable resistance region and the at least one switching device.
    Type: Application
    Filed: April 13, 2009
    Publication date: April 15, 2010
    Inventors: Seungeon AHN, Kihwan KIM, Changjung KIM, Myungjae LEE, Bosoo KANG, Changbum LEE
  • Publication number: 20100090261
    Abstract: A magnetic stack with a multilayer free layer having a switchable magnetization orientation, the free layer comprising a first ferromagnetic portion and a second ferromagnetic portion with an electrically conducting non-magnetic intermediate layer between the first portion and the second portion. The magnetic stack also includes a first ferromagnetic reference layer having a pinned magnetization orientation, a first non-magnetic spacer layer between the free layer and the first reference layer, a second ferromagnetic reference layer having a pinned magnetization orientation, and a second non-magnetic spacer layer between the free layer and the second reference layer.
    Type: Application
    Filed: April 17, 2009
    Publication date: April 15, 2010
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Yuankai Zheng, Xuebing Feng, Zheng Gao
  • Publication number: 20100090288
    Abstract: A semiconductor fabrication method involving the use of eSiGe is disclosed. The eSiGe approach is useful for applying the desired stresses to the channel region of a field effect transistor, but also can introduce complications into the semiconductor fabrication process. Embodiments of the present invention disclose a two-step fabrication process in which a first layer of eSiGe is applied using a low hydrogen flow rate, and a second eSiGe layer is applied using a higher hydrogen flow rate. This method provides a way to balance the tradeoff of morphology, and fill consistency when using eSiGe. Embodiments of the present invention promote a pinned morphology, which reduces device sensitivity to epitaxial thickness, while also providing a more consistent fill volume, amongst various device widths, thereby providing a more consistent eSiGe semiconductor fabrication process.
    Type: Application
    Filed: October 10, 2008
    Publication date: April 15, 2010
    Applicant: International Business Machines Corporation
    Inventors: Judson R. Holt, Abhishek Dube, Eric C.T. Harley, Shwu-Jen Jeng, Jeremy J. Kempisty, Hasan Munir Nayfeh, Keith Howard Tabakman
  • Publication number: 20100084735
    Abstract: A method for forming a seal ring is disclosed. First, a substrate including a MEMS region, a logic region and a seal ring region is provided. Second, a trench is formed in the MEMS region and multiple recesses are formed in the seal ring region. An oxide fills the trench and the recesses. Later, a MOS is form in the logic region and a dielectric layer is formed on the substrate. Then, an etching procedure is carried out to partially remove the dielectric layer and simultaneously remove the oxide in the multiple recesses completely to form a seal ring space. Afterwards, a metal fills the seal ring space to from the seal ring.
    Type: Application
    Filed: October 8, 2008
    Publication date: April 8, 2010
    Inventor: Chin-Sheng Yang
  • Publication number: 20100084626
    Abstract: An electronic device (100) comprises a substrate (101), a first electrode (102) formed at least partially on the substrate (101), a second electrode (103) formed at least partially on the substrate (101), a convertible structure (104) connected between the first electrode (102) and the second electrode (103), and a spacer element (105) connected between the first electrode (102) and the second electrode (103) and adapted for spacing the convertible structure (104) with regard to a surface of the substrate (101)
    Type: Application
    Filed: May 28, 2008
    Publication date: April 8, 2010
    Applicant: NXP, B.V.
    Inventors: Romain Delhougne, Michael Zandt
  • Publication number: 20100084741
    Abstract: According to an embodiment, an integrated circuit including a plurality of resistance changing memory cells is disclosed. Each memory cell includes a first electrode, a second electrode and resistance changing memory element arranged between the first electrode and the second electrode. A front surface area of an end section of the first electrode that faces the resistance changing memory element is smaller than a front surface area of an end section of the second electrode that faces the resistance changing memory element.
    Type: Application
    Filed: October 8, 2008
    Publication date: April 8, 2010
    Inventors: Dieter Andres, Rainer Bruchhaus, Ulrike Gruening-Von Schwerin, Ulrich Klostermann, Franz Kreupl, Michael Kund, Petra Majewski, Christian Ruester, Bernhard Ruf, Ralf Symanczyk, Klaus-Dieter Ufert
  • Patent number: 7692239
    Abstract: A MIS-type semiconductor device has reduced ON-resistance by securing an overlapping area between the gate electrode and the drift region, and has low switching losses by reducing the feedback capacitance. The MIS-type semiconductor device includes a p-type base region, an n-type drift region, a p+-type stopper region in the base region, a gate insulation film on the base region, a gate electrode on the gate insulation film, an oxide film on the drift region, a field plate on the oxide film, and a source electrode. The position (P) of the impurity concentration peak in base region is located more closely to the drift region. The oxide film is thinner on the side of the gate electrode. The field plate is connected electrically to the source electrode, the spacing (dg) between the gate insulation film and the stopper region is 2.5 ?m or narrower, and the minimum spacing (x) between the drain region and the stopper region is 5.6 ?m or narrower.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: April 6, 2010
    Assignee: Fuji Electric Device Technology Co., Ltd.
    Inventor: Tatsuji Nagaoka
  • Publication number: 20100079246
    Abstract: An integrated circuit with a rectifier element. One embodiment provides a signal source, an electronic circuit and a rectifier element with a copper layer and a cuprous oxide layer adjacent to and in direct contact with the copper layer. The signal source is configured to drive a signal on a signal output terminal that is electrically coupled to the copper layer. The electronic circuit is electrically coupled to the cuprous oxide layer. The rectifier element may be formed between wiring layers of an integrated circuit.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Applicant: Qimonda AG
    Inventor: Ricardo Mikalo
  • Publication number: 20100080051
    Abstract: An apparatus comprising a substrate, a heater formed on the substrate, and a phase-change layer formed on the heater. The heater comprises a heater layer and first and second electrodes electrically coupled to the heater layer. A process comprising forming a heater on a substrate and forming a phase-change layer on the heater. The heater comprises a heater layer and first and second electrodes electrically coupled to the heater layer.
    Type: Application
    Filed: December 4, 2009
    Publication date: April 1, 2010
    Inventors: Qing Ma, Valluri R. Rao, Tsung-Kuan Allen Chou
  • Patent number: 7687884
    Abstract: Manufacturing multiple solid state capacitors includes providing a metal substrate layer; forming on an upper surface of the substrate layer a plurality of upstanding bodies consisting of porous sintered valve-action metal; forming a dielectric layer on the bodies; forming a cathode layer on the dielectric layer; coating a top end of each upstanding body with at least one conducting intermediary layer by liquid or vapor phase deposition or by application of an immobilized flowable composition such as a solidifiable paste; forming an intimate physical contact between the cathode layer and the intermediate layer; encapsulating side walls of each body with an electrically insulating material; and dividing the processed substrate into a plurality of individual capacitor bodies each having a sleeve of encapsulating material, an anode terminal surface portion at one end consisting of exposed substrate and a cathode terminal surface portion at the other end consisting of exposed intermediary layer.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: March 30, 2010
    Assignee: AVX Limited
    Inventor: David Huntington
  • Publication number: 20100072572
    Abstract: One or more embodiments relate to a semiconductor device, comprising: a inductor coil including a winding; and a capacitor arrangement including at least one capacitor, the capacitor arrangement electrically coupled to the inductor coil, the footprint of the capacitor arrangement at least partially overlapping the footprint of the inductor coil.
    Type: Application
    Filed: September 23, 2008
    Publication date: March 25, 2010
    Inventors: Peter BAUMGARTNER, Philipp RIESS
  • Publication number: 20100072445
    Abstract: Methods of forming planar carbon nanotube (“CNT”) resistivity-switching materials for use in memory cells are provided, that include depositing first dielectric material, patterning the first dielectric material, etching the first dielectric material to form a feature within the first dielectric material, depositing CNT resistivity-switching material over the first dielectric material to fill the feature at least partially with the CNT resistivity-switching material, depositing second dielectric material over the CNT resistivity-switching material, and planarizing the second dielectric material and the CNT resistivity-switching material so as to expose at least a portion of the CNT resistivity-switching material within the feature. Other aspects are also provided.
    Type: Application
    Filed: April 10, 2009
    Publication date: March 25, 2010
    Applicant: SANDISK 3D LLC
    Inventors: April D. Schricker, Mark H. Clark
  • Patent number: 7683483
    Abstract: Flip-chip electronic devices (40, 70, 80, 90) employ bumps (42, 72, 82) for coupling to an external substrate. Device cells (43, 73, 83, 93) and bumps (42, 72, 82) are preferably arranged in clusters (46) where four bumps (42, 72, 82) substantially surround each device cell (43, 73, 83, 93) or form a cross with the device cell (43, 73, 83, 93) at the intersection of the cross. The bumps (42, 72, 82) are desirably spaced apart by the minimum allowable bump (42, 72, 82) pitch (Lm). Typically, each device cell (43, 73, 83, 93) contains one or more active device regions (44, 74, 86, 96) depending on the overall function. Complex devices (40, 70) are formed by an X-Y array of the clusters (46), where adjacent clusters (46) may share bumps (43, 73, 83, 93) and/or device cells (43, 73, 83, 93). In a preferred embodiment, the bumps (42, 82) form the outer perimeter (48) of the device (40, 80, 90). The maximum device temperature and overall noise is reduced.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: March 23, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Radu M. Secareanu, Suman K. Banerjee, Olin L. Hartin, Sandra J. Wipf
  • Publication number: 20100065836
    Abstract: A resistive memory device includes an insulation layer over a substrate, a nanowire penetrating the insulation layer, a resistive layer formed over the insulation layer and contacting with the nanowire, and an upper electrode formed over the resistive layer.
    Type: Application
    Filed: December 23, 2008
    Publication date: March 18, 2010
    Applicant: Hynix Semiconductor Inc.
    Inventor: Yu-Jin Lee
  • Publication number: 20100065945
    Abstract: A semiconductor integrated circuit is reduced in size by suppressing lateral extension of an isolation region when impurities are thermally diffused in a semiconductor substrate to form the isolation region. Boron ions (B+) are implanted into an epitaxial layer through a third opening K3 to form a P-type impurity region, using a third photoresist as a mask. Then a fourth photoresist is formed on a silicon oxide film to have fourth openings K4 (phosphorus ion implantation regions) that partially overlap the P-type impurity region. Phosphorus ions (P+) are implanted into the surface of the epitaxial layer in etched-off regions using the fourth photoresist as a mask to form N-type impurity regions that are adjacent the P-type impurity region. After that, a P-type upper isolation region is formed in the epitaxial layer by thermal diffusion so that the upper isolation region and a lower isolation region are combined together to make an isolation region.
    Type: Application
    Filed: September 12, 2008
    Publication date: March 18, 2010
    Applicants: SANYO Electric Co., Ltd., SANYO Semiconductor Co., Ltd., SANYO Semiconductor Manufacturing Co., Ltd.
    Inventor: Keiji MITA
  • Publication number: 20100065940
    Abstract: A semiconductor fabrication system and method are presented. A three dimensional multilayer integrated circuit fabrication method can include forming a first device layer and forming a second device layer on top of the first device layer with minimal detrimental heat transfer to the first layer by utilizing a controlled laser layer formation annealing process. A controlled laser crystallization process can be utilized and the controlled laser can include creating an amorphous layer; defining a crystallization area in the amorphous layer, where in the crystallization area is defined to promote single crystal growth (i.e. prevent multi-crystalline growth); and applying laser to the crystallization area, wherein the laser is applied in a manner that prevents undesired heat transfer to another layer.
    Type: Application
    Filed: September 12, 2008
    Publication date: March 18, 2010
    Inventors: Eunha KIM, Jeremy WAHL, Shenqing FANG, YouSeok SUH, Kuo-Tung CHANG, Yi MA, Rinji SUGINO, Jean YANG
  • Publication number: 20100065901
    Abstract: The present memory device includes a substrate, a tunneling layer over the substrate, a floating gate over the tunneling layer, a dielectric over the floating gate and including silicon oxynitride, and a control gate over the dielectric. A method for fabricating such a memory device is also provided, including various approaches for forming the silicon oxynitride.
    Type: Application
    Filed: September 17, 2008
    Publication date: March 18, 2010
    Inventors: Minh Q. Tran, Minh-Van Ngo, Alexander H. Nickel, Jeong-Uk Huh
  • Publication number: 20100065942
    Abstract: A semiconductor device is made by providing an integrated passive device (IPD). Through-silicon vias (TSVs) are formed in the IPD. A capacitor is formed over a surface of the IPD by depositing a first metal layer over the IPD, depositing a resistive layer over the first metal layer, depositing a dielectric layer over the first metal layer, and depositing a second metal layer over the resistive and dielectric layers. The first metal layer and the resistive layer are electrically connected to form a resistor and the first metal layer forms a first inductor. A wafer supporter is mounted over the IPD using an adhesive material and a third metal layer is deposited over the IPD. The third metal layer forms a second inductor that is electrically connected to the capacitor and the resistor by the TSVs of the IPD. An interconnect structure is connected to the IPD.
    Type: Application
    Filed: September 17, 2008
    Publication date: March 18, 2010
    Applicant: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Jianmin Fang, Kang Chen, Haijing Cao
  • Patent number: 7679145
    Abstract: A semiconductor substrate having metal oxide semiconductor (MOS) devices, such as an integrated circuit die, is mechanically coupled to a stress structure to apply a stress that improves the performance of at least a portion of the MOS devices on the die.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: March 16, 2010
    Assignee: Intel Corporation
    Inventors: Jun He, Zhiyong Ma, Jose A. Maiz, Mark Bohr, Martin D. Giles, Guanghai Xu
  • Publication number: 20100059808
    Abstract: A nonvolatile memory cell has charge trapping dielectric (160) which has been modified (i.e. oxidized) adjacent to edges of blocking dielectric (180). The modification reduces the charge-trapping density adjacent to the edges of the blocking dielectric, and hence reduces the leakage current at the edges. Other features are also provided.
    Type: Application
    Filed: September 10, 2008
    Publication date: March 11, 2010
    Inventors: Wei Zheng, Chung Wah Fon
  • Publication number: 20100059852
    Abstract: A method of fabricating a semiconductor device structure is provided. The method begins by providing a substrate having a layer of semiconductor material, a pad oxide layer overlying the layer of semiconductor material, and a pad nitride layer overlying the pad oxide layer. The method proceeds by selectively removing a portion of the pad nitride layer, a portion of the pad oxide layer, and a portion of the layer of semiconductor material to form an isolation trench. Then, the isolation trench is filled with a lower layer of isolation material, a layer of etch stop material, and an upper layer of isolation material, such that the layer of etch stop material is located between the lower layer of isolation material and the upper layer of isolation material. The layer of etch stop material protects the underlying isolation material during subsequent fabrication steps.
    Type: Application
    Filed: September 11, 2008
    Publication date: March 11, 2010
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: Rohit PAL, David BROWN, Scott LUNING
  • Patent number: 7675103
    Abstract: A spin transistor comprises a semiconductor substrate part having a lower cladding layer, a channel layer and an upper cladding layer sequentially stacked therein, a ferromagnetic source and drain on the substrate part, and a gate on the substrate part to control spins of electrons passing through the channel layer. The lower cladding layer comprises a first lower cladding layer and a second lower cladding layer having a higher band gap than that of the first lower cladding layer. The upper cladding layer comprises a first upper cladding layer and a second upper cladding layer having a higher band gap than that of the first upper cladding layer. The source and the drain are buried in an upper surface of the substrate part and extend downwardly to or under the first upper cladding layer.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: March 9, 2010
    Assignee: Korea Institute of Science and Technology
    Inventors: Hyun-Cheol Koo, Suk-Hee Han, Jong-Hwa Eom, Joon-Yeon Chang, Hyung-Jun Kim, Hyun-Jung Yi
  • Publication number: 20100054653
    Abstract: A salicide heater structure for use in thermo-optic and other heat-influenced semiconductor devices is disclosed. In one example embodiment, a system is provided that includes a silicon substrate, and a salicide heating element formed on the substrate, for delivering heat radiation to a heat-influenced semiconductor device. Another example embodiment is a salicide semiconductor system that includes a silicon substrate and a salicide structure formed on the substrate, wherein the salicide structure is for delivering heat radiation to a heat-influenced semiconductor device.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 4, 2010
    Applicant: BAE SYSTEMS Information and Electronic Systems Integration Inc.
    Inventor: Daniel N. Carothers
  • Publication number: 20100052082
    Abstract: A micro-electro-mechanical systems (MEMS) package includes a MEMS microphone device. The MEMS microphone device has a first substrate and at least a sensing element on the first substrate wherein a first chamber in the MEMS microphone device is connected to the sensing element. A second substrate is disposed over the MEMS microphone device to provide a second chamber in the second substrate over the sensing element opposite to the first chamber.
    Type: Application
    Filed: September 3, 2008
    Publication date: March 4, 2010
    Applicant: SOLID STATE SYSTEM CO., LTD.
    Inventors: Chien-Hsing Lee, Tsung-Min Hsieh, Chih-Hsiang Lin
  • Publication number: 20100052095
    Abstract: An inductor for semiconductor devices and a method of fabricating the same are disclosed. Through an improved electrical connection between a metal wiring and an inductor line, an improved Q-index and minimized energy loss in a substrate can be accomplished, and a parasitic capacitance can be minimized. For this, the inductor which may include a substrate and an insulating layer formed over the substrate and containing a metal wiring therein. A metal pad may be formed over the insulating layer. An inductor line may be formed over the insulating layer and connected to the metal pad. A pad contact, a metal layer and a via contact may be sequentially stacked within the insulating layer between the metal wiring and the metal pad.
    Type: Application
    Filed: August 27, 2008
    Publication date: March 4, 2010
    Inventor: Su-Tae Kim
  • Publication number: 20100052114
    Abstract: The present invention has the objects to provide a novel material for forming Si-containing film, especially a material containing a cyclic siloxane compound suitable to a PECVD equipment for low dielectric constant insulating film, and to provide an Si-containing film using the same, and a semiconductor device containing those films. The present invention relates to a material for forming Si-containing film, containing a cyclic siloxane compound represented by the following general formula (1) (In the formula, A represents a group containing at least one selected from the group consisting of an oxygen atom, a boron atom and a nitrogen atom, n is 1 or 2, and x is an integer of from 2 to 10.), and its use.
    Type: Application
    Filed: January 17, 2006
    Publication date: March 4, 2010
    Applicant: TOSOH CORPORATION
    Inventors: Daiji Hara, Mayumi Takamori
  • Patent number: 7671427
    Abstract: A method of manufacturing a film bulk acoustic resonator and the resonator manufactured thereby. The method includes the laminating a sacrificial layer on a semiconductor substrate, removing a predetermined area from the sacrificial layer to realize electric contact between a signal line of the semiconductor substrate and a lower electrode, forming the lower electrode by depositing metal film for lower electrode on the sacrificial layer, by patterning based on a shape of the sacrificial layer, forming a piezoelectric layer by depositing a piezoelectric material on the lower electrode and by patterning based on a shape of the lower electrode, and forming an upper electrode by depositing metal film on the piezoelectric layer and by patterning based on a shape of the piezoelectric layer, wherein at least one of a deposition pressure and a deposition power is controlled to generate upward stress when depositing the metal film for the lower electrode.
    Type: Grant
    Filed: May 5, 2004
    Date of Patent: March 2, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-seok Kim, Sung-hoon Choa, In-sang Song, Young-tack Hong
  • Publication number: 20100044796
    Abstract: A DC-to-DC converter includes a high-side transistor and a low-side transistor wherein the high-side transistor is implemented with a high-side enhancement mode MOSFET. The low side-transistor further includes a low-side enhancement MOSFET shunted with a depletion mode transistor having a gate shorted to a source of the low-side enhancement mode MOSFET. A current transmitting in the DC-to-DC converter within a time-period between T2 and T3 passes through a channel region of the depletion mode MOSFET instead of a built-in diode D2 of the low-side MOSFET transistor. The depletion mode MOSFET further includes trench gates surrounded by body regions with channel regions immediately adjacent to vertical sidewalls of the trench gates wherein the channel regions formed as depletion mode channel regions by dopant ions having electrical conductivity type opposite from a conductivity type of the body regions.
    Type: Application
    Filed: August 22, 2008
    Publication date: February 25, 2010
    Inventor: Fwu-Iuan Hshieh
  • Publication number: 20100044827
    Abstract: A method for manufacturing a substrate structure comprising a film and a substrate structure made by this method are disclosed. The method for manufacturing a substrate structure comprising a film includes the steps of: providing a target substrate; providing an initial substrate; forming an embrittlement-layer on the initial substrate; forming a device layer on the embrittlement-layer; doping with hydrogen ions; bonding the device layer with the target substrate; and separating the device layer from the initial substrate. The hydrogen ions are added into the embrittlement-layer through doping, before an energy treatment is applied to embrittle and break the embrittlement-layer, thereby separating the device layer from the initial substrate. Since the hydrogen ions are added into the embrittlement-layer through doping, a crystal lattice structure of the device layer will not be damaged during the step of doping with hydrogen ions.
    Type: Application
    Filed: August 22, 2008
    Publication date: February 25, 2010
    Inventors: Tien-Hsi Lee, Chao-Sung Lai, Ching-Han Huang, Chia-Che Ho, Ping-Jung Wu, Shou-Jiun Jeng
  • Publication number: 20100038718
    Abstract: The present invention relates to a semiconductor device including a substrate layer, a metal-oxide-semiconductor field-effect transistor (MOSFET), a backgate region, an isolation layer and a diode. The MOSFET includes a gate region, a source region and a drain region. The source and drain regions are embedded in the backgate region, which includes a voltage input terminal. The isolation layer is located between the backgate region and the substrate layer and has a doping type opposite that of the backgate region. The diode includes a first terminal connected to the isolation layer and a second terminal coupled to an isolation voltage source.
    Type: Application
    Filed: August 13, 2008
    Publication date: February 18, 2010
    Inventors: Haiyang ZHU, David Foley
  • Publication number: 20100038723
    Abstract: A method for fabricating a transistor having self-aligned borderless electrical contacts is disclosed. A gate stack is formed on a silicon region. An off-set spacer is formed surrounding the gate stack. A sacrificial layer that includes a carbon-based film is deposited overlying the silicon region, the gate stack, and the off-set spacer. A pattern is defined in the sacrificial layer to define a contact area for the electrical contact. The pattern exposes at least a portion of the gate stack and source/drain. A dielectric layer is deposited overlying the sacrificial layer that has been patterned and the portion of the gate stack that has been exposed. The sacrificial layer that has been patterned is selectively removed to define the contact area at the height that has been defined. The contact area for the height that has been defined is metalized to form the electrical contact.
    Type: Application
    Filed: August 18, 2008
    Publication date: February 18, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Katherina E. Babich, Josephine B. Chang, Nicholas C. Fuller, Michael A. Guillorn, Isaac Lauer, Michael J. Rooks
  • Publication number: 20100038754
    Abstract: In one embodiment, a back-end-of-line (BEOL) resistive structure comprises a second metal line embedded in a second dielectric layer and overlying a first metal line embedded in a first dielectric layer. A doped semiconductor spacer or plug laterally abutting sidewalls of the second metal line and vertically abutting a top surface of the first metal line provides a resistive link between the first and second metal lines. In another embodiment, another BEOL resistive structure comprises a first metal line and a second metal line are embedded in a dielectric layer. A doped semiconductor spacer or plug laterally abutting the sidewalls of the first and second metal lines provides a resistive link between the first and second metal lines.
    Type: Application
    Filed: August 14, 2008
    Publication date: February 18, 2010
    Applicant: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Kiran V. Chatty, Robert J. Gauthier, JR., Jed H. Rankin, Robert Robison, Yun Shi, William R. Tonti
  • Publication number: 20100032738
    Abstract: A magnetic tunnel junction cell having a free layer and first pinned layer with perpendicular anisotropy, the cell including a coupling layer between the free layer and a second pinned layer, the coupling layer comprising a phase change material switchable from an antiferromagnetic state to a ferromagnetic state. In some embodiments, at least one actuator electrode proximate the coupling layer transfers a strain from the electrode to the coupling layer to switch the coupling layer from the antiferromagnetic state to the ferromagnetic state. Memory devices and methods are also described.
    Type: Application
    Filed: October 9, 2008
    Publication date: February 11, 2010
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventor: Jianxin Zhu