With Floating Gate (epo) Patents (Class 257/E29.3)
  • Patent number: 8338244
    Abstract: Provided are three-dimensional nonvolatile memory devices and methods of fabricating the same. The memory devices include semiconductor pillars penetrating interlayer insulating layers and conductive layers alternately stacked on a substrate and electrically connected to the substrate and floating gates selectively interposed between the semiconductor pillars and the conductive layers. The floating gates are formed in recesses in the conductive layers.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: December 25, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byoungkeun Son, Hansoo Kim, Jinho Kim, Kihyun Kim
  • Patent number: 8338875
    Abstract: Isolation trenches are formed in the main surface of a semiconductor substrate, and isolation regions. are embedded in these trenches. First insulating films, charge storage layers, a second insulating film, and a control gate are formed on the main surface of the semiconductor substrate sectioned by the isolation regions. Shielding layers are arranged in the isolation regions in such a manner that their bottom portions are lower than the channel regions and their upper portions are higher than at least the main surface of the semiconductor substrate to provide an electric and magnetic shield between their storage layers and channel regions of adjacent memory cells.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: December 25, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takashi Nakao
  • Publication number: 20120319186
    Abstract: A method for forming a memory device includes: forming a tunnel insulation layer, a conductive layer for a floating gate electrode, a charge blocking layer and a conductive layer for a control gate electrode over a substrate; and selectively etching the conductive layer for the control gate electrode, the charge blocking layer and the conductive layer for the floating gate electrode, thereby forming a plurality of gate lines, a plurality of select lines and at least two dummy lines disposed in a gap region between adjacent select lines, wherein the gate lines, the select lines and the dummy lines together construct strings.
    Type: Application
    Filed: August 28, 2012
    Publication date: December 20, 2012
    Applicant: Hynix Semiconductor Inc.
    Inventor: Nam-Jae LEE
  • Publication number: 20120319096
    Abstract: Various embodiments are provided for semiconductor devices including an electrically percolating source layer and methods of fabricating the same. In one embodiment, a semiconductor device includes a gate layer, a dielectric layer, a memory layer, a source layer, a semiconducting channel layer, and a drain layer. The source layer is electrically percolating and perforated. The semiconducting channel layer is in contact with the source layer and the memory layer. The source layer and the semiconducting channel layer form a gate voltage tunable charge injection barrier.
    Type: Application
    Filed: March 4, 2011
    Publication date: December 20, 2012
    Inventors: Andrew Gabriel Rinzler, Bo Liu, Mitchell Austin McCarthy
  • Publication number: 20120319172
    Abstract: Methods of fabricating 3D charge-trap memory cells are described, along with apparatus and systems that include them. In a planar stack formed by alternate layers of electrically conductive and insulating material, a substantially vertical opening may be formed. Inside the vertical opening a substantially vertical structure may be formed that comprises a first layer, a charge-trap layer, a tunneling oxide layer, and an epitaxial silicon portion. Additional embodiments are also described.
    Type: Application
    Filed: August 29, 2012
    Publication date: December 20, 2012
    Inventors: Nirmal Ramaswamy, Gurtej S. Sandhu
  • Patent number: 8334560
    Abstract: Circuits and methods for providing a floating gate structure comprising floating gate cells having improved reverse tunnel disturb immunity. A floating gate structure is formed over a semiconductor substrate comprising a floating gate, a charge trapping dielectric layer is formed, and a control gate is formed. The floating gate structure has vertical sidewalls, one side adjacent a source region and one side adjacent a drain region. A symmetric sidewall dielectric is formed over the floating gate structure on both the source side and drain side regions. An asymmetric dielectric layer is formed over the drain side sidewall only. The use of the asymmetric sidewall on the drain side sidewall provides improved RTD immunity. Methods for forming the structure are disclosed.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: December 18, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jui-Yu Pan, Chung-Jen Hwang, Ming-Hui Shen
  • Publication number: 20120313097
    Abstract: A graded composition, high dielectric constant gate insulator is formed between a substrate and floating gate in a flash memory cell transistor. The gate insulator comprises amorphous germanium or a graded composition of germanium carbide and silicon carbide. If the composition of the gate insulator is closer to silicon carbide near the substrate, the electron barrier for hot electron injection will be lower. If the gate insulator is closer to the silicon carbide near the floating gate, the tunnel barrier can be lower at the floating gate.
    Type: Application
    Filed: August 27, 2012
    Publication date: December 13, 2012
    Inventors: Leonard Forbes, Kie Y. Ahn
  • Publication number: 20120314509
    Abstract: A non-volatile semiconductor device and a method for operating the same are disclosed, where the non-volatile semiconductor device includes a gate dielectric layer, a p-type floating gate, a coupling gate, a first p-type source/drain, a second p-type source/drain, a first contact plug and a second contact plug. The gate dielectric layer is formed on a n-type semiconductor substrate. The p-type floating gate is formed on the gate dielectric layer. The first p-type source/drain and the second p-type source/drain are formed in the n-type semiconductor substrate. The first and second contact plugs are formed on the first and second p-type source/drains respectively. The coupling gate consists essentially of a capacitor dielectric layer and a third contact plug, where the capacitor dielectric layer is formed on the p-type floating gate, and the third contact plug is formed on the capacitor dielectric layer.
    Type: Application
    Filed: April 3, 2012
    Publication date: December 13, 2012
    Inventors: Chrong-Jung LIN, Ya-Chin KING
  • Publication number: 20120313158
    Abstract: The present invention provides a semiconductor structure and a method for manufacturing the same. The method comprises: providing a substrate, forming sequentially a first high-k dielectric layer, an adjusting layer, a second high-k dielectric layer and a metal gate on the substrate, etching the first high-k dielectric layer, the adjusting layer, the second high-k dielectric layer and the metal gate to form a gate stack. Accordingly, the present invention further provides a semiconductor structure. The present invention proposes to arrange an adjusting layer between two layers of high-k dielectric layer, which effectively avoids reaction of the adjusting layer with the metal gate because of their direct contact, so as to maintain the performance of semiconductor devices.
    Type: Application
    Filed: August 25, 2011
    Publication date: December 13, 2012
    Applicants: BEIJING NMC CO., LTD., Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
  • Patent number: 8330203
    Abstract: A first insulation film is formed on a semiconductor substrate. A first gate electrode is formed on the first insulation film. A second insulation film is formed on an upper surface and a side surface of the first gate electrode. A second gate electrode is formed on the second insulation film. The entirety of that part of the second gate electrode, which is located above the second insulation film formed on the upper surface of the first gate electrode, is a silicide layer. At least a portion of that part of the second gate electrode, which is located on the side surface of the first gate electrode, is a silicon layer.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: December 11, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Toshitake Yaegashi
  • Patent number: 8330205
    Abstract: A memory device includes a first floating gate electrode on a substrate between adjacent isolation layers in the substrate, at least a portion of the first floating gate protruding above a portion of the adjacent isolation layers, a second floating gate electrode, electrically connected to the first floating gate electrode, on at least one of the adjacent isolation layers, a dielectric layer over the first and second floating gate electrodes, and a control gate over the dielectric layer and the first and second floating gate electrodes.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: December 11, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Se-Hoon Lee, Donghoon Jang, Jong Jin Lee, Jeong-Dong Choe
  • Publication number: 20120307569
    Abstract: A nonvolatile memory cell is disclosed, having first and second semiconductor islands at the same horizontal level and spaced a predetermined distance apart, the first semiconductor island providing a control gate and the second semiconductor island providing source and drain terminals; a gate dielectric layer on at least part of the first semiconductor island; a tunneling dielectric layer on at least part of the second semiconductor island; a floating gate on at least part of the gate dielectric layer and the tunneling dielectric layer; and a metal layer in electrical contact with the control gate and the source and drain terminals. In one advantageous embodiment, the nonvolatile memory cell may be manufactured using an “all-printed” process technology.
    Type: Application
    Filed: August 14, 2012
    Publication date: December 6, 2012
    Inventors: Arvind KAMATH, Patrick Smith, James Montague Cleeves
  • Patent number: 8324675
    Abstract: A flash memory device having a vertical channel structure. The flash memory device includes a substrate having a surface that extends in a first direction, a channel region having a pillar shape and extending from the substrate in a second direction that is perpendicular to the first direction, a gate dielectric layer formed around the channel region, a memory cell string comprising a plurality of transistors sequentially formed around the channel region in the second direction, wherein the gate dielectric layer is disposed between the plurality of transistors and the channel region, and a bit line connected to one of the plurality of transistors, and surrounding a side wall and an upper surface of one end of the channel region so as to directly contact the channel region.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: December 4, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hui-chang Moon, Han-soo Kim, Won-seok Cho, Jae-hoon Jang, Ki-hyun Kim
  • Patent number: 8324678
    Abstract: The method of manufacturing a semiconductor device, including a first region where a transistor including a gate electrode of a stacked structure is formed, a second region where a transistor including a gate electrode of a single-layer structure is formed, and a third region positioned in a boundary part between the first region and the second region, includes: depositing a first conductive film, patterning the first conductive film in the first region and the third region so that the outer edge is positioned in the third region, depositing the second conductive film, patterning the second conductive film to form a control gate in the first region while leaving the second conductive film, covering the second region and having the inner edge positioned inner of the outer edge of the first conductive film, and patterning the second conductive film in the second region to form the gate electrode.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: December 4, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Hiroyuki Ogawa, Hideyuki Kojima, Taiji Ema
  • Publication number: 20120299082
    Abstract: A non-volatile memory device includes a semiconductor substrate having a peripheral circuit region and a cell region, wherein the cell region of the semiconductor substrate is lower in height than the peripheral circuit region of the semiconductor substrate, a control gate structure disposed over the cell region of the semiconductor substrate and comprising a plurality of inter-layer dielectric layers that are alternately stacked with a plurality of control gate electrodes, a first insulation layer covering the cell region of the semiconductor substrate where the control gate structure is formed, a selection gate electrode disposed over the first insulation layer, and a peripheral circuit device disposed over the peripheral circuit region of the semiconductor substrate.
    Type: Application
    Filed: September 15, 2011
    Publication date: November 29, 2012
    Inventor: Byung-Soo PARK
  • Publication number: 20120299079
    Abstract: Field Side Sub-bitline NOR-type (FSNOR) flash array and the methods of fabrication are disclosed. The field side sub-bitlines of the invention formed with the same impurity type as the memory cells' source/drain electrodes along the two sides of field trench oxide link all the source electrodes together and all the drain electrodes together, respectively, for a string of semiconductor Non-Volatile Memory (NVM) cells in a NOR-type flash array of the invention. Each field side sub-bitline is connected to a main metal bitline through a contact at its twisted point in the middle. Because there are no contacts in between the linked NVM cells' electrodes in the NOR-type flash array of the invention, the wordline pitch and the bitline pitch can be applied to the minimum geometrical feature of a specific technology node. The NOR-type flash array of the invention provides at least as high as those in the conventional NAND flash array in cell area density.
    Type: Application
    Filed: May 23, 2011
    Publication date: November 29, 2012
    Inventor: Lee WANG
  • Publication number: 20120299081
    Abstract: A nonvolatile memory device includes a floating gate formed over a semiconductor substrate, an insulator formed on a first sidewall of the floating gate, a dielectric layer formed on a second sidewall and an upper surface of the floating gate, and a control gate formed over the dielectric layer.
    Type: Application
    Filed: December 20, 2011
    Publication date: November 29, 2012
    Inventor: Nam-Jae LEE
  • Patent number: 8318602
    Abstract: According to an aspect of the present invention, there is provided a nonvolatile semiconductor storage apparatus including: a substrate; a columnar semiconductor disposed perpendicular to the substrate; a charge storage laminated film disposed around the columnar semiconductor; a first conductor layer that is in contact with the charge storage laminated film and that has a first end portion having a first end face; a second conductor layer that is in contact with the charge storage laminated film, that is separated from the first conductor layer and that has a second end portion having a second end face; a first contact plug disposed on the first end face; and a second contact plug disposed on the second end face.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: November 27, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaru Kito, Hirofumi Inoue
  • Patent number: 8319268
    Abstract: A semiconductor device includes a semiconductor substrate including at least one memory channel region and at least one memory source/drain region, the memory channel region and the memory source/drain region being arranged alternately, and at least one word line on the memory channel region, wherein the memory source/drain region has a higher net impurity concentration than the memory channel region.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: November 27, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-Hyun Lee, Jung-Dal Choi
  • Publication number: 20120292684
    Abstract: A non-volatile memory device includes a first storage layer making contact with a sidewall of an active region in an isolation trench and a second charge storage layer making contact with an opposite sidewall of the active region in the isolation trench, first and second tunnel insulation layers interposed between the first charge storage layer and the active region and between the second charge storage layer and the active region, a first charge blocking layer disposed over the first and second charge storage layers, and a control gate disposed over the first charge blocking layer.
    Type: Application
    Filed: December 19, 2011
    Publication date: November 22, 2012
    Inventor: Cha-Deok DONG
  • Publication number: 20120292683
    Abstract: A method of making a non-volatile memory cell includes forming a plurality of discrete storage elements. A tensile dielectric layer is formed among the discrete storage elements and provides lateral tensile stress to the discrete storage elements. A gate is formed over the discrete storage elements.
    Type: Application
    Filed: May 19, 2011
    Publication date: November 22, 2012
    Inventors: Konstantin V. Loiko, Brian A. Winstead, Mehul D. Shroff
  • Publication number: 20120292685
    Abstract: It is made possible to provide a method for manufacturing a semiconductor device that has a high-quality insulating film in which defects are not easily formed, and experiences less leakage current. A method for manufacturing a semiconductor device, includes: forming an amorphous silicon layer on an insulating layer; introducing oxygen into the amorphous silicon layer; and forming a silicon oxynitride layer by nitriding the amorphous silicon layer having oxygen introduced thereinto.
    Type: Application
    Filed: July 27, 2012
    Publication date: November 22, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Daisuke Matsushita, Yuuichiro Mitani
  • Publication number: 20120292686
    Abstract: In a semiconductor device, and a method of manufacturing thereof, the device includes a substrate of single-crystal semiconductor material extending in a horizontal direction and a plurality of interlayer dielectric layers on the substrate. A plurality of gate patterns are provided, each gate pattern being between a neighboring lower interlayer dielectric layer and a neighboring upper interlayer dielectric layer. A vertical channel of single-crystal semiconductor material extends in a vertical direction through the plurality of interlayer dielectric layers and the plurality of gate patterns, a gate insulating layer being between each gate pattern and the vertical channel that insulates the gate pattern from the vertical channel.
    Type: Application
    Filed: August 6, 2012
    Publication date: November 22, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yong-Hoon Son, Jong-Wook Lee
  • Publication number: 20120292682
    Abstract: In an embodiment of the invention, a method of fabricating a floating-gate PMOSFET (p-type metal-oxide semiconductor field-effect transistor) is disclosed. A silicide blocking layer (e.g. oxide, nitride) is used not only to block areas from being silicided but to also form an insulator on top of a poly-silicon gate. The insulator along with a top electrode (control gate) forms a capacitor on top of the poly-silicon gate. The poly-silicon gate also serves at the bottom electrode of the capacitor. The capacitor can then be used to capacitively couple charge to the poly-silicon gate. Because the poly-silicon gate is surrounded by insulating material, the charge coupled to the poly-silicon gate may be stored for a long period of time after a programming operation.
    Type: Application
    Filed: May 19, 2011
    Publication date: November 22, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Shanjen Pan, Allan T. Mitchell, Weidong Tian
  • Patent number: 8314456
    Abstract: Isolated conductive nanoparticles on a dielectric layer and methods of fabricating such isolated conductive nanoparticles provide charge traps in electronic structures for use in a wide range of electronic devices and systems. In an embodiment, conductive nanoparticles are deposited on a dielectric layer by a plasma-assisted deposition process such that each conductive nanoparticle is isolated from the other conductive nanoparticles to configure the conductive nanoparticles as charge traps.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: November 20, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Eugene P. Marsh, Brenda D Kraus
  • Publication number: 20120286345
    Abstract: A non-volatile memory device includes a substrate including a cell region and a peripheral circuit region, a first insulation layer formed over the substrate to cover the peripheral circuit region thereof, and interlayer dielectric patterns and first conductive patterns alternately formed over the substrate of the cell region. Each of the interlayer dielectric patterns and the first conductive patterns includes a horizontal part extending along a surface of the substrate and a vertical part extending along a sidewall of the first insulation layer.
    Type: Application
    Filed: November 25, 2011
    Publication date: November 15, 2012
    Inventors: Dae-Young SEO, Jong-Won JANG
  • Publication number: 20120289010
    Abstract: A semiconductor device and method of making a semiconductor device are disclosed. A semiconductor body, a floating gate poly and a source/drain region are provided. A metal interconnect region with a control gate node is provided that capacitively couples to the floating gate poly.
    Type: Application
    Filed: July 20, 2012
    Publication date: November 15, 2012
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Georg Tempel, Ernst-Otto Andersen, Achim Gratz
  • Publication number: 20120286346
    Abstract: According to one embodiment, a semiconductor device includes a semiconductor substrate, a trench formed in an element isolating area of the semiconductor substrate, and a silicon oxide film that is embedded in the trench and contains an alkali metal element or alkali earth metal element.
    Type: Application
    Filed: December 2, 2011
    Publication date: November 15, 2012
    Inventor: Keisuke NAKAZAWA
  • Publication number: 20120286333
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Application
    Filed: July 20, 2012
    Publication date: November 15, 2012
    Applicant: Life Technologies Corporation
    Inventors: Jonathan M. Rothberg, Wolfgang Hinz, Kim L. Johnson, James Bustillo
  • Publication number: 20120286349
    Abstract: In one example, the memory device includes a gate insulation layer, a first conductive storage layer positioned above the gate insulation layer and a first non-conductive charge storage layer positioned above the first conductive storage layer. The device further includes a blocking insulation layer positioned above the first non-conductive charge storage layer and a gate electrode positioned above said blocking insulation layer.
    Type: Application
    Filed: May 13, 2011
    Publication date: November 15, 2012
    Applicant: GLOBALFOUNDRIES SINGAPORE PTE LTD
    Inventor: Shyue Seng Tan
  • Publication number: 20120287715
    Abstract: A non-volatile memory cell and array structure is disclosed situated within a high voltage region of an integrated circuit. The cell utilizes capacitive coupling based on an overlap between a gate and a drift region to impart a programming voltage. Programming is effectuated using a drain extension which can act to inject hot electrons. The cell can be operated as a one-time programmable (OTP) or multiple-time programmable (MTP) device. The fabrication of the cell relies on processing steps associated with high voltage devices, thus avoiding the need for additional masks, manufacturing steps, etc.
    Type: Application
    Filed: May 10, 2012
    Publication date: November 15, 2012
    Inventor: David K.Y. Liu
  • Publication number: 20120286347
    Abstract: In the trap type memory chip the withstanding voltage is raised up, and then the electric current for reading out is increased. There are formed on the p-type semiconductor substrate1 a first gate lamination structure which comprises a first insulating film 11 including a trap layer, and a first conductive body 9, and a second gate lamination structure which comprises a second insulating film 12 free of a trap layer and including an insulating film layer 13 doped with metal for controlling the work function at least on the upper layer, and a second conductive body 10. A source drain region 2 and a source drain region 3 are formed such that the first gate lamination structure and the second gate lamination structure are interleaved therebetween. The effective work function of the second gate lamination structure is higher than that of the first gate lamination structure.
    Type: Application
    Filed: July 27, 2012
    Publication date: November 15, 2012
    Applicant: NEC CORPORATION
    Inventor: Masayuki Terai
  • Publication number: 20120280301
    Abstract: In one embodiment there is set forth a method comprising providing a semiconductor structure having an electrode, wherein the providing includes providing a phase transition material region and wherein the method further includes imparting energy to the phase transition material region to induce a phase transition of the phase transition material region. By inducing a phase transition of the phase transition material region, a state of the semiconductor structure can be changed. There is further set forth an apparatus comprising a structure including an electrode and a phase transition material region, wherein the apparatus is operative for imparting energy to the phase transition material region to induce a phase transition of the phase transition material region without the phase transition of the phase transition material region being dependent on electron transport through the phase transition material region.
    Type: Application
    Filed: May 28, 2010
    Publication date: November 8, 2012
    Applicant: CORNELL UNIVERSITY
    Inventors: Sandip Tiwari, Ravishankar Sundararaman, Sang Hyeon Lee, Moonkyung Kim
  • Publication number: 20120280300
    Abstract: A semiconductor device includes gates formed over a semiconductor substrate that are spaced apart from one another and each have a stack structure of a tunnel insulation layer, a floating gate, a dielectric layer, a first conductive layer, and a metal silicide layer, a first insulation layer formed along the sidewalls of the gates and a surface of the semiconductor substrate between the gates and configured to have a height lower than the top of the metal silicide layer; and a second insulation layer formed along surfaces of the first insulation layer and surfaces of the metal silicide layer and configured to cover an upper portion of a space between the gates, wherein an air gap is formed between the gates.
    Type: Application
    Filed: May 31, 2011
    Publication date: November 8, 2012
    Inventors: Tae Kyung KIM, Min Sik Jang, Sang Deok Kim
  • Publication number: 20120280303
    Abstract: According to one embodiment, a first trench extending in a first direction is formed in a stacked structure in which a plurality of spacer films and a plurality of channel semiconductor films are alternately stacked. A first space is formed by forming a recess in the channel semiconductor films from the first trench. A tunnel dielectric film is formed in the first space, and the first space is further filled with a floating gate electrode film. Second trenches that divide the stacked structure at predetermined interval in the first direction are formed so as to divide the floating gate electrode film between memory cells adjacent to each other in the first direction but not to divide the channel semiconductor films.
    Type: Application
    Filed: February 6, 2012
    Publication date: November 8, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masahiro KIYOTOSHI, Kiwamu Sakuma, Haruka Kusai
  • Publication number: 20120280302
    Abstract: Memory cell structures and methods are described herein. One or more memory cells include a transistor having a charge storage node, a dielectric material positioned between the charge storage node and a channel region of the transistor, the channel region positioned between a source region and a drain region, and a first electrode of a diode coupled to the charge storage node.
    Type: Application
    Filed: July 20, 2012
    Publication date: November 8, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Gurtej S. Sandhu, Bhaskar Srinivasan
  • Publication number: 20120280304
    Abstract: A non-volatile memory device having a vertical structure includes a semiconductor layer, a sidewall insulation layer extending in a vertical direction on the semiconductor layer, and having one or more protrusion regions, first control gate electrodes arranged in the vertical direction on the semiconductor layer, and respectively contacting one of portions of the sidewall insulation layer where the one or more protrusion regions are not formed and second control gate electrodes arranged in the vertical direction on the semiconductor layer, and respectively contacting one of the one or more protrusion regions.
    Type: Application
    Filed: April 27, 2012
    Publication date: November 8, 2012
    Inventors: SANG-HOON LEE, JIN-GYUN KIM, KOONG-HYUN NAM, KI-HYUN HWANG, HUN-HYEONG LIM, DONG-KYUM KIM
  • Patent number: 8306757
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: November 6, 2012
    Assignee: Life Technologies Corporation
    Inventors: Jonathan M. Rothberg, Wolfgang Hinz, Kim L. Johnson, James M. Bustillo
  • Patent number: 8304309
    Abstract: Methods of forming memory and memory devices are disclosed, such as a memory device having a memory cell with a floating gate formed from a first conductor, a control gate formed from a second conductor, and a dielectric interposed between the floating gate and the control gate. For example, a select gate may be coupled in series with the memory cell and has a first control gate portion formed from the first conductor and a second control gate portion formed from a third conductor. A contact may be formed from the third conductor and coupled in series with the select gate. Other methods and devices are also disclosed.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: November 6, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Andrew Bicksler
  • Publication number: 20120273863
    Abstract: A nonvolatile semiconductor memory device includes: a semiconductor member; a memory film provided on a surface of the semiconductor member and being capable of storing charge; and a plurality of control gate electrodes provided on the memory film, spaced from each other, and arranged along a direction parallel to the surface. Average dielectric constant of a material interposed between one of the control gate electrodes and a portion of the semiconductor member located immediately below the control gate electrode adjacent to the one control gate electrode is lower than average dielectric constant of a material interposed between the one control gate electrode and a portion of the semiconductor member located immediately below the one control gate electrode.
    Type: Application
    Filed: July 11, 2012
    Publication date: November 1, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yoshio OZAWA, Fumiki AlSO
  • Publication number: 20120273864
    Abstract: Systems of electrically programmable and erasable memory cell are disclosed. In one exemplary implementation, a cell may have two storage transistors in a substrate of semiconductor material of a first conductivity type. The first storage transistor is of the type having a first region and a second region each of a second conductivity type in the substrate. The second storage transistor is of the type having a third region and a fourth region each of a second conductivity type in the substrate. Arrays formed of such memory cells and non-volatile memory cells are also disclosed.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Inventors: Nhan Do, Amitay Levi
  • Publication number: 20120273860
    Abstract: An only-one-polysilicon layer non-volatile memory unit cell includes a first P-type transistor, a second P-type transistor, a N-type transistor pair, a first and second coupling capacitors is provided. The N-type transistor pair has a third transistor and a fourth transistor that are connected. The third transistor and the fourth transistor have a first floating polysilicon gate and a second floating polysilicon gate to serve as charge storage mediums, respectively. One end of the second coupling capacitor is connected to the gate of the second transistor and is coupled to the second floating polysilicon gate, the other end of the second coupling capacitor receives a second control voltage. One end of the second coupling capacitor is connected to the gate of the second transistor and is coupled to the second floating polysilicon gate, the other end of the second coupling capacitor receives a second control voltage.
    Type: Application
    Filed: July 4, 2012
    Publication date: November 1, 2012
    Applicant: eMemory Technology Inc.
    Inventors: Hsin-Ming Chen, Shih-Chen Wang, Wen-Hao Ching, Yen-Hsin Lai, Hau-Yan Lu, Ching-Sung Yang
  • Publication number: 20120273865
    Abstract: A three dimensional (3-D) non-volatile memory device includes a pipe gate including a first pipe gate, a second pipe gate formed on the first pipe gate, and a first interlayer insulating layer interposed between the first pipe gate and the second pipe gate, word lines alternately stacked with second interlayer insulating layers on the pipe gate, a pipe channel buried within the pipe gate, and memory cell channels coupled to the pipe channel and arranged to pass through the word lines and the second interlayer insulating layers.
    Type: Application
    Filed: April 25, 2012
    Publication date: November 1, 2012
    Inventors: In Hey LEE, Byung Soo PARK, Sang Hyun OH, Sun Mi PARK
  • Patent number: 8298900
    Abstract: A method of manufacturing a nonvolatile semiconductor storage device includes sequentially forming a charge storage film, a conductive film, and a mask film on a semiconductor substrate, sequentially removing the mask film, the conductive film, and the charge storage film at a given portion to form a groove, forming a word gate electrode to fill in the groove whose inside is covered with an insulating film, after said forming the word gate electrode, removing the mask film, after said removing the mask film, forming a spacer film to cover the conductive film and the word gate electrode, etching back the spacer film to form a spacer layer on both sides of the word gate electrode through the insulating film, removing the conductive film and the charge storage film to form a control gate electrode, and forming a source drain diffusion layer.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: October 30, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Fumihiko Hayashi
  • Publication number: 20120267698
    Abstract: The present invention provides a floating-gate non-volatile semiconductor memory device and a method of making the same. The floating-gate non-volatile semiconductor memory device comprises a semiconductor substrate, a source, a drain, a first insulator layer, a first polysilicon layer, a second insulator layer, a second polysilicon layer, a protective layer and sidewalls. The source and drain are disposed on the semiconductor substrate. The first insulator layer is disposed over a region of the semiconductor substrate other than regions corresponding to the source and drain. The first polysilicon layer is disposed over the first insulator layer, forming a floating gate. The second insulator layer is disposed over the first polysilicon layer. The second polysilicon layer is disposed over the second insulator layer, forming a control gate and a wordline. The sidewalls are disposed on two sides of the wordline, and the protective layer is disposed over the second polysilicon layer.
    Type: Application
    Filed: January 4, 2011
    Publication date: October 25, 2012
    Applicant: FUDAN UNIVERSITY
    Inventors: Dongping Wu, Shi-Li Zhang
  • Publication number: 20120267700
    Abstract: The present invention discloses a tunneling current amplification transistor, which relates to an area of field effect transistor logic devices in CMOS ultra large scale semiconductor integrated circuits (ULSI). The tunneling current amplification transistor includes a semiconductor substrate, a gate dielectric layer, an emitter, a drain, a floating tunneling base and a control gate, wherein the drain, the floating tunneling base and the control gate forms a conventional TFET structure, and a doping type of the emitter is opposite to that of the floating tunneling base. A position of the emitter is at the other side of the floating tunneling base with respect to the drain. A type of the semiconductor between the emitter and the floating tunneling base is the same as that of the floating tunneling base.
    Type: Application
    Filed: May 26, 2011
    Publication date: October 25, 2012
    Applicant: PEKING UNIVERSITY
    Inventors: Ru Huang, Zhan Zhan, Qianqian Huang, Yangyuan Wang
  • Patent number: 8294197
    Abstract: A flash memory cell includes a substrate, a blocking layer over the substrate, a floating gate over the blocking layer, a retention layer over the floating gate, a control gate over the retention layer, a tunneling layer over the control gate, a top gate over the tunneling layer, and a voltage source electrically coupled between the top gate and the control gate. Various charge tunneling mechanisms may be used for charges to tunnel through the retention layer.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: October 23, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Tsong Wang, Tong-Chern Ong
  • Patent number: 8294195
    Abstract: According to an aspect of the present invention, there is provided a nonvolatile semiconductor memory element including: a semiconductor substrate including: a source region; a drain region; and a channel region; a lower insulating film that is formed on the channel region; a charge storage film that is formed on the lower insulating film and that stores data; an upper insulating film that is formed on the charge storage film; and a control gate that is formed on the upper insulating film, wherein the upper insulating film includes: a first insulting film; and a second insulating film that is laminated with the first insulating film, and wherein the first insulating film is formed to have a trap level density larger than that of the second insulating film.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: October 23, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masao Shingu, Jun Fujiki, Naoki Yasuda, Koichi Muraoka
  • Patent number: 8294193
    Abstract: Semiconductor memory having both volatile and non-volatile modes and methods of operation.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: October 23, 2012
    Assignee: Zeno Semiconductor, Inc.
    Inventor: Yuniarto Widjaja
  • Publication number: 20120261736
    Abstract: A non-volatile memory device includes a substrate, a gate stack, a selecting gate, an erasing gate, a source region, and a drain region. The gate stack on the substrate includes from bottom to top a tunneling dielectric layer, a floating gate, an inter-gate dielectric layer, a control gate, and a spacer that is located between sidewalls of the control gate and the inter-gate dielectric layer. A side of the floating gate adjacent to the erasing gate has a warp-around profile and a sharp corner protruding from a vertical surface of the spacer. The selecting and erasing gates are respectively located at first and second sides of the substrate of the gate stack. The source region is located in the substrate under the erasing gate. The drain region is located in the substrate at a side of the selecting gate.
    Type: Application
    Filed: July 4, 2011
    Publication date: October 18, 2012
    Applicant: Powerchip Technology Corporation
    Inventors: Cheng-Yuan Hsu, Chun-Hsiao Li