Light Emitting Semiconductor Devices Having A Potential Or A Surface Barrier, Processes Or Apparatus Peculiar To The Manufacture Or Treatment Of Such Devices, Or Of Parts Thereof Patents (Class 257/E33.001)
  • Patent number: 8736057
    Abstract: A substrate having, on a base material, a barrier film for preventing copper diffusion containing one or more metal elements selected from tungsten, molybdenum and niobium, a metal element having a catalytic function in electroless plating such as platinum, gold, silver and palladium, and nitrogen contained in the form of a nitride of the aforementioned one or more metal elements selected from tungsten, molybdenum and niobium. The barrier film for preventing copper diffusion is manufactured by sputtering in a nitrogen atmosphere using a target containing one or more metal elements selected from tungsten, molybdenum and niobium and the aforementioned metal element having a catalytic function in electroless plating.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: May 27, 2014
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Junichi Ito, Atsushi Yabe, Junnosuke Sekiguchi, Toru Imori
  • Patent number: 8735194
    Abstract: Provided is a method of manufacturing a display apparatus, including forming a drive circuit and a light-emitting portion on a substrate in which the forming the light-emitting portion includes forming a transparent anode electrode for applying a charge to an emission layer, forming a first coating layer and a second coating layer on the transparent anode electrode, removing the first coating layer by etching using the second coating layer as a mask, and forming a layer including the emission layer on a part of the transparent anode electrode from which the first coating layer is removed. A surface of the transparent anode electrode becomes as clean as a surface cleaned with ultraviolet irradiation.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: May 27, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kenji Takahashi, Masafumi Sano
  • Patent number: 8735928
    Abstract: A method of producing a surface-mountable semiconductor component including providing an auxiliary carrier made with a plastics material; applying at least one insert and at least one optoelectronic component to a mounting surface of the auxiliary carrier; enclosing the optoelectronic component and the insert in a common molding, wherein the molding covers the optoelectronic component and the insert form-fittingly at least in places, the optoelectronic component and the insert are not in direct contact with one another, and the optoelectronic component and the insert are connected together mechanically by the molding; removing the auxiliary carrier; and producing individual surface-mountable semiconductor components by severing the molding.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: May 27, 2014
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Harald Jäger, Michael Zitzlsperger, Markus Pindl
  • Patent number: 8735922
    Abstract: A LED mirror light assembly comprises a body having a through hole configured subject to a predetermined shape and located on a middle part thereof, a film-coated glass configured subject to shape of the through hole and supported on a first step, a LED holder holding a plurality of light-emitting diodes, and a reflector comprising a reflective surface located on a front side thereof and facing toward the light-emitting diodes and a light-shading coating coated on a rear side thereof The reflector being kept in a non-parallel manner relative to the film-coated glass and defining with the film-coated glass a predetermined contained angle so that the light spots of the light-emitting diodes are repeatedly reflected by the reflective back face of the film-coated glass and the reflective surface of the reflector, forming a curved tunnel of light spots.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: May 27, 2014
    Inventor: Chien-Tsai Tsai
  • Patent number: 8729551
    Abstract: A flat panel display includes; a first substrate, a white reflective layer disposed on the first substrate, a pixel electrode disposed on the white reflective, a second substrate disposed facing the first substrate, a common electrode disposed on the second substrate, and an electrooptic layer disposed between the pixel electrode and the common electrode, wherein the white reflective layer includes at least one of TiO2 and BaSO4.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: May 20, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Nam-Seok Roh, Jung-Woo Park, Dae-Jin Park, Yu-Jin Kim, Joo-Han Bae, Tae-Hyung Hwang, Seok-Joon Hong
  • Patent number: 8729575
    Abstract: The semiconductor light emitting device according to an embodiment includes an N-type nitride semiconductor layer, a nitride semiconductor active layer disposed on the N-type nitride semiconductor layer, and a P-type nitride semiconductor layer disposed on the active layer. The P-type nitride semiconductor layer includes an aluminum gallium nitride layer. The indium concentration in the aluminum gallium nitride layer is between 1E18 atoms/cm3 and 1E20 atoms/cm3 inclusive. The carbon concentration is equal to or less than 6E17 atoms/cm3. Where the magnesium concentration is denoted by X and the acceptor concentration is denoted by Y, Y>{(?5.35e19)2?(X?2.70e19)2}1/2?4.63e19 holds.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: May 20, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Jongil Hwang, Hung Hung, Yasushi Hattori, Rei Hashimoto, Shinji Saito, Masaki Tohyama, Shinya Nunoue
  • Patent number: 8710523
    Abstract: The present invention provides novel methods of forming component carriers, component modules, and the carriers and modules formed therefrom which utilize thick film technology. In some embodiments, these methods are used to form lighting device chip carriers and modules. In further embodiments, these lighting device chip carriers and modules are used in LED applications.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: April 29, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Joel Slutsky, Brian D. Veeder, Thomas Lin
  • Patent number: 8710614
    Abstract: A light receiving element includes a core configured to propagate a signal light, a first semiconductor layer having a first conductivity type, the first semiconductor layer being configured to receive the signal light from the core along a first direction in which the core extends, an absorbing layer configured to absorb the signal light received by the first semiconductor layer, and a second semiconductor layer having a second conductivity type opposite to the first conductivity type.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: April 29, 2014
    Assignee: Fujitsu Limited
    Inventor: Kazumasa Takabayashi
  • Patent number: 8704254
    Abstract: A semiconductor structure includes a light emitting region disposed between an n-type region and a p-type region. A wavelength converting material configured to absorb a portion of the first light emitted by the light emitting region and emit second light is disposed in a path of the first light. A filter is disposed in a path of the first and second light. In some embodiments, the filter absorbs or reflects a fraction of first light at an intensity greater than a predetermined intensity. In some embodiments, the filter absorbs or reflects a portion of the second light. In some embodiments, a quantity of filter material is disposed in the path of the first and second light, then the CCT of the first and second light passing through the filter is detected. Filter material may be removed to correct the detected CCT to a predetermined CCT.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: April 22, 2014
    Assignee: Philips Lumileds Lighting Company, LLC
    Inventors: Troy A. Trottier, Matthijs H. Keuper
  • Patent number: 8701592
    Abstract: A mask frame includes a frame and a mask installed on the frame while being stretched in a first direction. The mask includes a deposition area including a plurality of deposition pattern portions, an edge unit formed to have a thickness greater than a thickness of the deposition area and including a first edge and a second edge that extend in the first direction on two sides of the deposition area, and two or more ribs formed to have a thickness greater than the thickness of the deposition area between deposition pattern portions adjacent to each other in a second direction perpendicular to the first direction.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 22, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jung-Woo Ko, Ikunori Kobayashi, Sang-Shin Lee, Taek-Kyo Kang
  • Patent number: 8704267
    Abstract: The light-emitting display device comprises first and second thin film transistors. The first thin film transistor includes a first gate electrode; a first oxide semiconductor film; and a first electrode and a second electrode which are electrically connected to the first oxide semiconductor film. The second thin film transistor includes a second gate electrode electrically connected to the second electrode; a second oxide semiconductor film; a third electrode; a light-emitting layer and a fourth electrode over the second oxide semiconductor film. A work function of the second oxide semiconductor film is higher than a work function of the fourth electrode.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: April 22, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hiromichi Godo
  • Patent number: 8704208
    Abstract: A semiconductor light emitting device includes a first and second conductive semiconductor layers including an n-type dopant on active layer; a third and fourth conductive semiconductor layers including a p-type dopant under the active layer; wherein the first to fourth conductive semiconductor layers are formed of an AlGaN-based semiconductor, wherein the active layer includes a plurality of quantum barrier layers and a plurality of quantum well layers, wherein the plurality of quantum well layers include an InGaN semiconductor layer, wherein the plurality of quantum barrier layers include an AlGaN-based semiconductor layer, wherein at least two of the plurality barrier layers have a thickness of about 50 ? to about 300 ?, respectively, wherein a cycle of the quantum barrier layer and the quantum well layer includes a cycle of 2 to 10, wherein the second conductive semiconductor layer has a thickness thinner than a thickness of the third conductive semiconductor layer.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: April 22, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventor: Kyung Jun Kim
  • Patent number: 8698182
    Abstract: A light emitting device having auto-cloning photonic crystal structures comprises a substrate, a first semiconductor layer, an active emitting layer, a second semiconductor layer and a saw-toothed multilayer film comprising auto-cloning photonic crystal structures. The saw-toothed multilayer film provides a high reflection interface and a diffraction mechanism to prevent total internal reflection and enhance light extraction efficiency.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: April 15, 2014
    Assignee: National Tsing Hua University
    Inventors: Shiuh Chao, Hao-Min Ku, Chen-Yang Huang
  • Patent number: 8698176
    Abstract: A light emitting device includes a conductive support member, a first conductive layer on the conductive support member, a second conductive layer, a first semiconductor layer on the second conductive layer, a second semiconductor layer and an active layer between the first semiconductor layer and the second conductive layer, and an insulation layer disposed between the first conductive layer and the second conductive layer. The first conductive layer includes a first expansion part penetrating the second conductive layer, the second semiconductor layer and the active layer, and a second expansion part extending from the first expansion part and disposed in the first semiconductor layer. The insulation layer is on a lateral surface of the first expansion part. At least a portion of a lateral surface of the second expansion part contacts the first semiconductor layer, and the insulation layer is between the first semiconductor layer and the second expansion part.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: April 15, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventors: Hyun Kyong Cho, Ho Ki Kwon
  • Patent number: 8697462
    Abstract: A light emitting device having auto-cloning photonic crystal structures comprises a substrate, a first semiconductor layer, an active emitting layer, a second semiconductor layer and a saw-toothed multilayer film comprising auto-cloning photonic crystal structures. The saw-toothed multilayer film provides a high reflection interface and a diffraction mechanism to prevent total internal reflection and enhance light extraction efficiency. The manufacturing method of the light emitting device having auto-cloning photonic crystal structures is presented here.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: April 15, 2014
    Assignee: National Tsing Hua University
    Inventors: Shiuh Chao, Hao-Min Ku, Chen-Yang Huang
  • Patent number: 8698169
    Abstract: An organic light emitting diode (OLED) display includes a first electrode including a conductive black layer, a second electrode facing the first electrode, and an organic emission layer provided between the first electrode and the second electrode.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: April 15, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventor: Hyun-Eok Shin
  • Patent number: 8692716
    Abstract: A method of fabricating an antenna. In one embodiment, the method includes the steps of providing a substrate treated with a plasma treatment, providing a nanoparticle ink comprising nanoparticles, painting the nanoparticle ink on the substrate to form an antenna member in which the nanoparticles are connected, determining a feed point of the antenna member, and attaching an feeding port onto the substrate at the feed point to establish a contact between the feeding port and the antenna member.
    Type: Grant
    Filed: February 16, 2009
    Date of Patent: April 8, 2014
    Assignee: Board of Trustees of the University of Arkansas
    Inventors: Alexandru S. Biris, Hussain Al-Rizzo, Taha Elwi, Daniel Rucker
  • Patent number: 8692278
    Abstract: Disclosed are a light emitting device, a light emitting device package, a lighting system and a manufacturing method of light emitting device. The light emitting device includes a light emitting structure including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer between the first and second conductive semiconductor layers; a first ohmic layer over the light emitting structure; and a second ohmic layer including a pattern over the first ohmic layer.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: April 8, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventor: Hyun Don Song
  • Patent number: 8691674
    Abstract: A method for producing a group 3-5 nitride semiconductor includes the steps of (i), (ii), (iii) in this order: (i) placing inorganic particles on a substrate, (ii) epitaxially growing a semiconductor layer by using the inorganic particles as a mask, and (iii) separating the substrate and the semiconductor layer by irradiating the interface between the substrate and the semiconductor layer with light; and a method for producing a light emitting device further includes adding electrodes.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: April 8, 2014
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Sadanori Yamanaka, Kazumasa Ueda, Yoshihiko Tsuchida
  • Patent number: 8686448
    Abstract: D={(2?m+?L+?U)/4?}? is satisfied when an optical path length between a reflecting layer and pixel electrode and a counter electrode is D, a phase shift in reflection in the reflecting layer and pixel electrode is ?L, a phase shift in reflection in the counter electrode is ?U, a peak wavelength of a standing wave generated between the reflecting layer and pixel electrode, and the counter electrode is ?, and an integer of 2 or less is m. Here, among red, green, and blue pixel reflecting layer and pixel electrode, at least one reflecting layer and pixel electrode may be made of a different metal material from that of the other reflecting layer and pixel electrodes.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: April 1, 2014
    Assignee: Seiko Epson Corporation
    Inventor: Koya Shiratori
  • Patent number: 8685764
    Abstract: Techniques for fabricating contacts on inverted configuration surfaces of GaN layers of semiconductor devices are provided. An n-doped GaN layer may be formed with a surface exposed by removing a substrate on which the n-doped GaN layer was formed. The crystal structure of such a surface may have a significantly different configuration than the surface of an as-deposited p-doped GaN layer.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: April 1, 2014
    Assignee: SemiLEDs Optoelectronics Co., Ltd.
    Inventors: Chen-Fu Chu, Wen-Huang Liu, Jiunn-Yi Chu, Chao-Chen Cheng, Hao-Chun Cheng, Feng-Hsu Fan, Trung Tri Doan
  • Patent number: 8686571
    Abstract: A structure comprises a first semiconductor substrate, a first bonding layer deposited on a bonding side the first semiconductor substrate, a second semiconductor substrate stacked on top of the first semiconductor substrate and a second bonding layer deposited on a bonding side of the second semiconductor substrate, wherein the first bonding layer is of a horizontal length greater than a horizontal length of the second semiconductor substrate, and wherein there is a gap between an edge of the second bonding layer and a corresponding edge of the second semiconductor substrate.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: April 1, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Ting Huang, Jung-Huei Peng, Shang-Ying Tsai, Li-Min Hung, Yao-Te Huang, Yi-Chuan Teng, Chin-Yi Cho
  • Patent number: 8679880
    Abstract: An electron transporting surfactant is added to a raw material solution such that the electron transporting surfactant is coordinated on the surfaces of quantum dots, and after the dispersion solvent is evaporated by vacuum drying, the immersion in a solvent containing a hole transporting surfactant prepares a quantum dot dispersed solution with a portion of the electron transporting surfactant replaced with the hole transporting surfactant. The quantum dot dispersed solution is applied onto a substrate to prepare a hole transport layer and a quantum dot layer at the same time, and thereby to achieve a thin film which has a two-layer structure.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: March 25, 2014
    Assignee: Murata Manufaaturing Co., Ltd.
    Inventor: Koji Murayama
  • Patent number: 8674351
    Abstract: A data retention period of a memory circuit is lengthened, power consumption is reduced, and a circuit area is reduced. Further, the number of times written data can be read to one data writing operation is increased. A memory circuit has a first field-effect transistor, a second field-effect transistor, and a third field-effect transistor. A data signal is input to one of a source and a drain of the first field-effect transistor. A gate of the second field-effect transistor is electrically connected to the other of the source and the drain of the first field-effect transistor. One of a source and a drain of the third field-effect transistor is electrically connected to a source or a drain of the second field-effect transistor.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: March 18, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Jun Koyama, Shunpei Yamazaki
  • Patent number: 8674375
    Abstract: A light emitting diode (LED) includes a p-type layer of material, an n-type layer of material and an active layer between the p-type layer and the n-type layer. A roughened layer of transparent material is adjacent one of the p-type layer of material and the n-type layer of material. The roughened layer of transparent material has a refractive index close to or substantially the same as the refractive index of the material adjacent the layer of transparent material, and may be a transparent oxide material or a transparent conducting material. An additional layer of conductive material may be between the roughened layer and the n-type or p-type layer.
    Type: Grant
    Filed: July 21, 2005
    Date of Patent: March 18, 2014
    Assignee: Cree, Inc.
    Inventors: Steven P. Denbaars, James Ibbetson, Shuji Nakamura
  • Publication number: 20140063426
    Abstract: The present invention provides a liquid crystal display panel, which comprises: a first conductive layer, a first insulating layer, a second conductive layer, a second insulating layer, and a third conductive layer; the first insulating layer being disposed on the first conductive layer and comprising at least two first via-holes corresponding respectively to at least two first subsidiary conductive regions so that at least two first subsidiary conductive regions being partially exposed through first via-holes; the second conductive layer being disposed on the first insulating layer; the second insulating layer being disposed on the second conductive layer; the second insulating layer being disposed on the second conductive layer and comprising at least two second via-holes corresponding respectively to at least two second subsidiary; a third conductive layer being connected with first subsidiary conductive regions and a second conductive layer.
    Type: Application
    Filed: September 7, 2012
    Publication date: March 6, 2014
    Inventors: Ming-Hung Shih, Zhenghua Li, Je-Hao Hsu
  • Patent number: 8664672
    Abstract: A light emitting panel includes a plurality of light emitting element arrays each of which has a plurality of light emitting elements arranged in a plane. The light emitting element arrays are configured so that an arrangement plane of the light emitting elements of one light emitting element array is overlapped with another arrangement plane of the light emitting elements of another light emitting element array in substantially parallel to each other, and so that the light emitting elements of one light emitting element array and the light emitting elements of another light emitting element array emit lights to the same side.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: March 4, 2014
    Assignee: Oki Data Corporation
    Inventors: Mitsuhiko Ogihara, Takahito Suzuki, Tomoki Igari, Hiroyuki Fujiwara, Tomohiko Sagimori, Hironori Furuta, Yusuke Nakai
  • Patent number: 8664682
    Abstract: A semiconductor light emitting device includes: a light emitting structure including a first conductive type semiconductor layer, a second conductive type semiconductor layer and an active layer between the first conductive type semiconductor layer and the second conductive type semiconductor layer; and a first electrode on the first conductive type semiconductor layer, wherein the light emitting structure includes an outer groove formed at an outer area of the light emitting structure, wherein a thickness of an outmost area of the light emitting structure is smaller than a thickness of an center area of the light emitting structure, and wherein the first conductive type semiconductor layer includes AlGaN layer and the second conductive type semiconductor layer includes AlGaN layer.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: March 4, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventor: Sang Youl Lee
  • Patent number: 8658439
    Abstract: Disclosed herein is a quantum dot phosphor for light emitting diodes, which includes quantum dots and a solid substrate on which the quantum dots are supported. Also, a method of preparing the quantum dot phosphor is provided. Since the quantum dot phosphor of the current invention is composed of the quantum dots supported on the solid substrate, the quantum dots do not aggregate when dispensing a paste obtained by mixing the quantum dots with a paste resin for use in packaging of a light emitting diode. Thereby, a light emitting diode able to maintain excellent light emitting efficiency can be manufactured.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: February 25, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun Joo Jang, Mi Yang Kim, Hyung Kun Kim, Shin Ae Jun, Yong Wan Jin, Seong Jae Choi
  • Patent number: 8659048
    Abstract: An organic light emitting device includes a first electrode formed over a substrate, an intermediate layer that is formed over the first electrode and includes an organic light emitting layer, and a second electrode that includes a central electrode unit disposed in a central region and a peripheral electrode unit separated from the central electrode unit and disposed in a peripheral region. The intermediate layer is disposed between the first and second electrodes. The organic light emitting device can readily secure a uniform brightness characteristic.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: February 25, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Sang-Hoon Yim, Ok-Keun Song, Young-Mo Koo
  • Patent number: 8659045
    Abstract: The present invention provides a light emitting device, which includes a transparent substrate, an epitaxial stack structure having a first portion and a second portion on the transparent substrate, a II/V group compound contact layer on the first portion of the epitaxial stack structure, a nitride-crystallized layer on the II/V group compound contact layer, a transparent conductive layer covering the nitride-crystallized layer, a first electrode on a portion of the transparent conductive layer, and a second electrode on the second portion of the epitaxial stack structure and structurally separated from the structure on the first portion of the epitaxial stack structure. The nitride-crystallized layer may help increase the external quantum efficiency of the light emitting device, thereby the light emitting efficiency of the light emitting device may also be improved.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: February 25, 2014
    Assignee: Huga Optotech Inc.
    Inventors: Tzong-Liang Tsai, Yu-Chu Li, Chiung-Chi Tsai
  • Patent number: 8653555
    Abstract: A vertical light-emitting diode with a short circuit protection function includes a heat dissipation substrate, a second electrode, a welding metal layer and a third electrode; a semiconductor light-emitting layer formed on the third electrode; a barrier for the semiconductor light-emitting layer with an isolation trench, so that the barrier for the semiconductor light-emitting layer surrounds the semiconductor light-emitting layer on a central region of the third electrode, with the isolation trench therebetween. The barrier for the semiconductor light-emitting layer has a structure the same as the semiconductor light-emitting layer, and the isolation trench exposes the third electrode. A fourth electrode is formed on the semiconductor light-emitting layer.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: February 18, 2014
    Assignee: Xiamen Sanan Optoelectronics Technology Co., Ltd.
    Inventors: Xuejiao Lin, Huijun Huang
  • Patent number: 8647902
    Abstract: A method of manufacturing an array substrate for a liquid crystal display device includes forming gate and data lines crossing each other on a substrate; forming a thin film transistor connected to the gate and data lines; forming a passivation layer on the substrate having the gate lines, data lines and the thin film transistor; forming a first conductive material layer on the passivation layer and connected to a drain electrode of the thin film transistor; oxidizing a surface of the first conductive material layer; forming a second conductive material layer on the oxidized first conductive material layer; forming a photoresist pattern on the second conductive material layer; etching the first and second conductive material layers using the photoresist pattern to form pixel and common electrodes which are alternately arranged in the pixel region and produces an in-plane electric field; and removing the photoresist pattern.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: February 11, 2014
    Assignee: LG Display Co., Ltd.
    Inventors: Ju-Ran Lee, Jeong-Yun Lee, Hang-Sup Cho, Doo-Hee Jang
  • Patent number: 8646406
    Abstract: A mask assembly includes a frame with an opening, at least one support stick in the frame and extending in a first direction to traverse the opening of the frame, the support stick including a communication pattern above the opening of the frame, and a mask positioned on the frame and the at least one support stick, the mask extending in a second direction perpendicular to the first direction to traverse the opening of the frame, and the mask being exposed to the opening of the frame through the communication pattern.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: February 11, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hong-Kyun Ahn, Se-Young Oh
  • Patent number: 8643033
    Abstract: A light emitting device includes a substrate elongated in a lengthwise direction; a plurality of LED chips disposed on the substrate in an intermediate region in widthwise direction, and aligned along the lengthwise direction at a distance of 80 ?m or less; and interconnection wirings formed on regions outside the intermediate region in the widthwise direction; wherein each of the LED chips has a p-side electrode disposed on the substrate, a p-type semiconductor layer disposed on the p-side electrode, an active layer formed on the p-type semiconductor layer, and an n-type semiconductor layer formed on the active layer, and has a region in which the n-type semiconductor layer, the active layer, and the p-type semiconductor layer are patterned, and an n-side electrode formed selectively on a surface of the n-type semiconductor layer and connected to the p-side electrode of an adjacent LED chip through the interconnection wiring.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: February 4, 2014
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Tatsuma Saito, Mamoru Miyachi
  • Patent number: 8637329
    Abstract: A method for producing a semiconductor optical integrated device includes the steps of forming a substrate product including first and second stacked semiconductor layer portions; forming a first mask on the first and second stacked semiconductor layer portions, the first mask including a stripe-shaped first pattern region and a second pattern region, the second pattern region including a first end edge; forming a stripe-shaped mesa structure; removing the second pattern region of the first mask; forming a second mask on the second stacked semiconductor layer portion; and selectively growing a buried semiconductor layer with the first and second masks. The second mask includes a second end edge separated from the first end edge of the first mask, the second end edge being located on the side of the second stacked semiconductor layer portion in the predetermined direction with respect to the first end edge of the first mask.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: January 28, 2014
    Assignee: Sumitomo Electric Industries Ltd
    Inventors: Yoshihiro Yoneda, Hirohiko Kobayashi, Kenji Koyama, Masaki Yanagisawa, Kenji Hiratsuka
  • Patent number: 8637897
    Abstract: A semiconductor light emitting device includes a substrate and a plurality of light emitting cells arranged on the substrate. Each of the light emitting cells includes a first-conductivity-type semiconductor layer, a second-conductivity-type semiconductor layer, and an active layer disposed therebetween to emit blue light. An interconnection structure electrically connects the first-conductivity-type and the second-conductivity-type semiconductor layers of one light emitting cell to the first-conductivity-type and the second-conductivity-type semiconductor layers of another light emitting cell. A light conversion part is formed in a light emitting region defined by the light emitting cells and includes a red and/or a green light conversion part respectively having a red and/or a green light conversion material.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: January 28, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Je Won Kim, Tae Sung Jang, Jong Gun Woo, Jong Ho Lee
  • Patent number: 8637876
    Abstract: Disclosed are a light emitting device and a light emitting device package having the same. The light emitting device includes a plurality of light emitting cells including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer; a first electrode layer connected to the first conductive semiconductor layer of a first light emitting cell of the plural light emitting cells; a plurality of second electrode layers under the light emitting cells, a portion of the second electrode layers being connected to the first conductive semiconductor layer of an adjacent light emitting cells; a third electrode layer disposed under a last light emitting cell of the plural light emitting cells; a first electrode connected to the first electrode layer; a second electrode connected to the third electrode layer; an insulating layer around the first to third electrode layers; and a support member under the insulating layer.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: January 28, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventors: Sang Youl Lee, Jung Hyeok Bae, Ji Hyung Moon, Juno Song
  • Patent number: 8637874
    Abstract: A white LED lighting device driven by a pulse current is provided, which consists of blue, violet or ultraviolet LED chips, blue afterglow luminescence materials A and yellow luminescence materials B. Wherein the weight ratio of the blue afterglow luminescence materials A to the yellow luminescence materials B is 10-70 wt %:30-90 wt %. The white LED lighting device drives the LED chips with a pulse current having a frequency of not less than 50 Hz. Because of using the afterglow luminescence materials, the light can be sustained when an excitation light source disappears, thereby eliminating the influence of LED light output fluctuation caused by current variation on the illumination. At the same time, the pulse current can keep the LED chips being at an intermittent work state, so as to overcome the problem of chip heating.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: January 28, 2014
    Assignee: Sichuan Sunfor Light Co., Ltd.
    Inventors: Ming Zhang, Kun Zhao, Dong-ming Li
  • Patent number: 8629458
    Abstract: The present disclosure relates to a compound semiconductor light-emitting element comprising: a frame; an adhesive provided on the frame; a light-emitting part which is secured in position on the frame by means of the adhesive and which includes a substrate, a first compound semiconductor layer formed on the substrate and having a first type of conductivity, a second compound semiconductor layer having a second type of conductivity that is different from the first type of conductivity, and an active layer disposed between the first compound semiconductor layer and the second compound semiconductor layer to generate light via electron-hole recombination; and a spacer disposed between the light-emitting part and the frame to create a gap therebetween.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: January 14, 2014
    Assignee: Semicon Light Co., Ltd.
    Inventor: Soo Kun Jeon
  • Patent number: 8624276
    Abstract: There is provided a semiconductor light emitting device, a method of manufacturing the same, and a semiconductor light emitting device package using the same. A semiconductor light emitting device having a first conductivity type semiconductor layer, an active layer, a second conductivity type semiconductor layer, a second electrode layer, and insulating layer, a first electrode layer, and a conductive substrate sequentially laminated, wherein the second electrode layer has an exposed area at the interface between the second electrode layer and the second conductivity type semiconductor layer, and the first electrode layer comprises at least one contact hole electrically connected to the first conductivity type semiconductor layer, electrically insulated from the second conductivity type semiconductor layer and the active layer, and extending from one surface of the first electrode layer to at least part of the first conductivity type semiconductor layer.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: January 7, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Pun Jae Choi, Jin Hyun Lee, Ki Yeol Park, Myong Soo Cho
  • Patent number: 8624289
    Abstract: An optoelectronic component comprising the following features is disclosed, at least one semiconductor body (1) provided for emitting electromagnetic radiation of a first wavelength range, an inner radiation-permeable shaped body (2), into which the semiconductor body (1) is embedded, a wavelength-converting layer (6) on an outer side (5) of the inner shaped body (2), said layer comprising a wavelength conversion substance (8) suitable for converting radiation of the first wavelength range into radiation of a second wavelength range, which is different from the first wavelength range, a coupling-out lens (10), into which the inner shaped body (2) and the wavelength-converting layer (6) are embedded, wherein the coupling-out lens (10) has an inner side enclosed by an inner hemisphere area having a radius Rconversion, and an outer side enclosing an outer hemisphere area having a radius Router, and the radii Rconverstion and Router meet the Weierstrass condition: Router?Rconversion*nlens/nair, where nlens is the
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: January 7, 2014
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Ralph Wirth
  • Patent number: 8624274
    Abstract: A method for forming a pixel of an LED light source is provided. The method includes: forming a first layer on a first substrate; forming a second layer and a first light-emitting active layer on the first layer; forming a first intermediate layer on the second layer; forming a third layer on a second substrate; forming a fourth layer and a second light-emitting active layer on the third layer; placing the third layer, the fourth layer, and the second light-emitting active layer on the first intermediate layer, wherein the first light-emitting active layer and the second light-emitting active layer emit different colors of light. A method for forming a plurality of light-emitting diode pixels arranged in a two-dimensional array is also provided.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: January 7, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Han-Tsung Hsueh, Hsi-Hsuan Yen, Wen-Yung Yeh, Mu-Tao Chu
  • Patent number: 8624247
    Abstract: An organic light emitting diode (OLED) display includes: a first substrate; a display portion that is formed on the first substrate and includes a driving circuit portion and an organic light emitting diode; a thin film encapsulation layer that covers the display portion; an adhesive layer that covers an upper surface and a side of the thin film encapsulation layer; an absorption functional layer that is formed on the adhesive layer and absorbs at least one of oxygen and moisture; and a second substrate that is formed on the absorption functional layer.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: January 7, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventor: Jung-Mi Choi
  • Patent number: 8618546
    Abstract: A backplane includes: a substrate, a pixel electrode, which includes a transparent conductive material, on the substrate, a capacitor first electrode formed on the same layer as the pixel electrode, a first protection layer covering the capacitor first electrode and an upper edge of the pixel electrode, a gate electrode of a thin film transistor (TFT) formed on the first protection layer, a capacitor second electrode formed on the same layer as the gate electrode, a first insulating layer that covers the gate electrode and the capacitor second electrode, a semiconductor layer that is formed on the first insulating layer and includes a transparent conductive material, a second insulating layer covering the semiconductor layer, source and drain electrodes of the TFT that are formed on the second insulating layer, and a third insulating layer that covers the source and drain electrodes and exposes the pixel electrode.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: December 31, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jong-Han Jeong, Chaun-Gi Choi
  • Patent number: 8614450
    Abstract: The present invention is directed to a vertical-type luminous device and high through-put methods of manufacturing the luminous device. These luminous devices can be utilized in a variety of luminous packages, which can be placed in luminous systems. The luminous devices are designed to maximize light emitting efficiency and/or thermal dissipation. Other improvements include an embedded zener diode to protect against harmful reverse bias voltages.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: December 24, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: YuSik Kim
  • Patent number: 8610135
    Abstract: A frame body surrounding a perimeter of each light-emitting element is provided one surface of a substrate. Glass films having apertures are formed on the substrate by glass printing to form the frame body.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: December 17, 2013
    Assignees: Stanley Electric Co., Ltd., Nippon Carbide Industries Co., Inc.
    Inventors: Dai Aoki, Makoto Ida, Shigehiro Kawaura
  • Patent number: 8604496
    Abstract: According to one embodiment, an optical semiconductor device includes an n-type semiconductor layer, a p-type semiconductor layer, and a functional part. The functional part is provided between the n-type semiconductor layer and the p-type semiconductor layers. The functional part includes a plurality of active layers stacked in a direction from the n-type semiconductor layer toward the p-type semiconductor layer. At least two of the active layers include a multilayer stacked body, an n-side barrier layer, a well layer and a p-side barrier layer. The multilayer stacked body includes a plurality of thick film layers and a plurality of thin film layers alternately stacked in the direction. The n-side barrier layer is provided between the multilayer stacked body and the p-type layer. The well layer is provided between the n-side barrier layer and the p-type layer. The p-side barrier layer is provided between the well layer and the p-type layer.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: December 10, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomonari Shioda, Hisashi Yoshida, Koichi Tachibana, Naoharu Sugiyama, Shinya Nunoue
  • Patent number: 8598619
    Abstract: A semiconductor light emitting device includes a substrate and a plurality of light emitting cells arranged on the substrate. Each of the light emitting cells includes a first-conductivity-type semiconductor layer, a second-conductivity-type semiconductor layer, and an active layer disposed therebetween to emit blue light. An interconnection structure electrically connects the first-conductivity-type and the second-conductivity-type semiconductor layers of one light emitting cell to the first-conductivity-type and the second-conductivity-type semiconductor layers of another light emitting cell. A light conversion part is formed in a light emitting region defined by the light emitting cells and includes a red and/or a green light conversion part respectively having a red and/or a green light conversion material.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: December 3, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Je Won Kim, Tae Sung Jang, Jong Gun Woo, Jong Ho Lee
  • Patent number: 8598582
    Abstract: An organic light emitting display device includes a substrate, a plurality of unit pixels on the substrate, each unit pixel including a first region that emits light and a second region that transmits external light, thin film transistors (TFTs) disposed in the first region of each unit pixel, first electrodes disposed in the first region of each unit pixel, each first electrode being electrically connected to one of the TFTs, a second electrode facing the first electrodes, and commonly disposed in the unit pixels, and an organic layer interposed between the first electrodes and the second electrode, and including an emissive layer. With respect to two adjacent pixels of the plurality of unit pixels, the first region and the second region in one unit pixel are symmetrical with the first region and the second region in another adjacent unit pixel, and the second regions are connected to each other.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: December 3, 2013
    Assignee: Samsung Display
    Inventors: Jun-Ho Choi, Jin-Koo Chung, Seong-Min Kim