Differential Amplifier Patents (Class 327/52)
  • Patent number: 7411431
    Abstract: Box switches are stacked sharing a common current from power sources. The power sources may be current, voltage or a combination of such sources. In preferred embodiments, the transistor switches in the box switches may be paralleled by different polarity transistors that will act to better balance and make symmetrical the output signals. Capacitors may be used to smooth out residual noise voltage signals.
    Type: Grant
    Filed: February 6, 2006
    Date of Patent: August 12, 2008
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Steven Mark Macaluso
  • Patent number: 7400183
    Abstract: A delay cell circuit (200) is disclosed. The delay cell circuit may include a differential stage (202) and a cross-coupled stage (204). The cross-coupled stage can include resistors (210-0 and 210-1) the function to reduce a gain. The differential stage (202) and cross-coupled stage (204) can include variable currents sources (208 and 212), respectively. As frequency of operation increases, variable current source (208) provides a larger current to the differential stage (202) and variable current source (212) provides a smaller current to cross-coupled stage (204). Delay cell circuit (200) may be used in a voltage controlled oscillator (VCO). By including gain attenuating devices such as resistors (210-0 and 210-1), a frequency tuning range of the VCO may be increased.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: July 15, 2008
    Assignee: Cypress Semiconductor Corporation
    Inventors: Mohandas Palatholmana Sivadasan, Gajendar Rohilla
  • Publication number: 20080136459
    Abstract: A data amplifying circuit for a semiconductor integrated circuit including a controller configured to generate a control signal for adjusting an amplification step in response to a test signal, and a data amplifier configured to amplify an input signal one time or two or more times in response to the control signal and to output an output signal.
    Type: Application
    Filed: July 10, 2007
    Publication date: June 12, 2008
    Applicant: Hynix Semiconductor Inc.
    Inventor: Sung Joo Ha
  • Patent number: 7378881
    Abstract: Embodiments of a variable gain amplifier circuit are described. In one embodiment, multiple resistor devices are coupled in series to form a string of resistor devices and to receive an input current. A multiple input operational amplifier device has an amplifier output coupled to a feedback resistor in the string of resistor devices and multiple amplifier input pairs, each amplifier input being coupled into the string of resistor devices as a tap between two respective adjacent resistors, each amplifier input pair being controlled by a corresponding bias current transmitted from a respective bias current source.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: May 27, 2008
    Inventor: Ion E. Opris
  • Patent number: 7368955
    Abstract: In accordance with some embodiments, a current-balanced logic circuit includes a first sense amplifier, a second sense amplifier, and a current-source transistor which provides bias current to the first and second sense amplifiers. The first and second sense amplifiers are alternately activated by first and second differential clock signals, and when activated convert data received on differential input lines into logical values for storage in respective storage circuits. The storage circuits may be flip-flops, latches, keeper circuits, or other circuits for storing data.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: May 6, 2008
    Assignee: Intel Corporation
    Inventors: Kursad Kiziloglu, Michael W. Altmann
  • Patent number: 7362153
    Abstract: In some embodiments, a receiver latch circuit, includes a dynamic latch having at least one input terminal to receive an input data signal and at least one latch terminal. The dynamic latch is adapted to generate an amplified output data signal based at least in part on the input data signal. The dynamic latch includes at least one capacitor, coupled between the at least one input terminal and the at least one latch terminal, to reduce intersymbol interference in the input data signal.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: April 22, 2008
    Assignee: Intel Corporation
    Inventor: Taner Sumesaglam
  • Patent number: 7358777
    Abstract: Current feedback amplifiers circuits that generate common mode (CM) and/or differential mode (DM) currents are provided herein. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures and the claims.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: April 15, 2008
    Assignee: Intersil Americas Inc.
    Inventor: Jeffrey S. Lehto
  • Patent number: 7345512
    Abstract: A memory system includes a sense amplifier for detecting content of data memory cells by comparison with a voltage stored in a reference cell. The sense amplifier may comprise a comparator, first and second load circuits, and a low impedance circuit. A first input of the comparator is coupled to the low impedance circuit and a reference voltage node. A second input of the comparator is coupled to a data voltage node. The first load circuit loads a reference cell coupled to the reference voltage node. The second load circuit loads a data cell coupled to the data voltage node.
    Type: Grant
    Filed: May 4, 2004
    Date of Patent: March 18, 2008
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Hieu Van Tran, Sang Thanh Nguyen, Hung Quoc Nguyen
  • Publication number: 20080042691
    Abstract: Disclosed is a high speed and power efficient dual mode sense amplifier circuit, which comprises a configuration selector further comprising a read amplifier, a debug circuit and a backup read circuit. The dual mode sense amplifier circuit also comprises a controllable input node further comprising an enabling circuit, the controllable input node being coupled to the configuration selector and the dual mode sense amplifier circuit comprises a differential signal generator further comprising a reference signal source, the differential signal generator is coupled to the controllable input node. A method of dual mode sensing and other embodiments are also disclosed.
    Type: Application
    Filed: August 16, 2007
    Publication date: February 21, 2008
    Inventors: Vijay Kumar Srinivasa Raghavan, Ryan Tasuo Hirose
  • Publication number: 20080036507
    Abstract: For dormant periods in which in data is not transmitted to a differential signal reception circuit, an amount of a constant current provided to output buffers of a differential signal transmission circuit is reduced. Consequently, power consumption in the differential signal transmission circuit and the differential signal reception circuit is reduced.
    Type: Application
    Filed: June 22, 2007
    Publication date: February 14, 2008
    Inventor: Yasuhiro Yamashita
  • Patent number: 7327184
    Abstract: A low-power multi-level pulse amplitude modulation (PAM) driver, and a semiconductor device having the same, in which the multi (M)-level PAM driver includes a load unit, first and second current sources, a pair of first input transistors, a pair of second input transistors, and a current source controller, where M is an integer greater than 3. The load unit is electrically connected to an output terminal, and the first and second current sources respectively supply a first amount of current and a second amount of current to the load unit. The pair of first input transistors electrically connects the first current source and the load unit in response to a first bit signal, and the pair of the second input transistors electrically connects the second current source and the load unit in response to a second bit signal. The current source controller activates or deactivates one of the first and second current sources in response to the first and second bit signals.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: February 5, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki-Hyuk Sung, Chi-Won Kim
  • Patent number: 7327621
    Abstract: A sensing amplifier comprising a program cell current sensing circuit, an erase cell current sensing circuit and a latch circuit is provided. Each of the program and erase cell current sensing circuits further comprises a plurality of program/erase memory cells, a first NMOS transistor, a second NMOS transistor, a third NMOS transistor and a fourth PMOS transistor. Wherein, one of the drain/source of the first NMOS transistor is electrically coupled to both the program/erase memory cells and a gate of the third NMOS transistor to form a node. In addition, one of the drain/source of the third NMOS transistor is coupled to the latch circuit. Moreover, the program/erase memory cell provides a program/erase current to the first NMOS transistor. The latch circuit will be driven once the amount of the electric charges accumulated at the node caused by the program/erase current overcomes a threshold voltage of the third NMOS transistor.
    Type: Grant
    Filed: November 24, 2005
    Date of Patent: February 5, 2008
    Assignee: eMemory Technology Inc.
    Inventors: Ching-Yuan Lin, Hong-Ping Tsai
  • Publication number: 20070290722
    Abstract: A liquid crystal display backlight inverter including a first error amplifying unit receiving and comparing a first detection voltage corresponding to a current flowing through a lamp with a first preset reference voltage and outputting a first error voltage corresponding to an error therebetween; a second error amplifying unit receiving and comparing a second detection voltage corresponding to a voltage applied to the lamp with a second preset reference voltage and outputting a second error voltage corresponding to an error therebetween; a feedback selector selecting one of the outputs of the first and second error amplifying unit according to an error between the second detection voltage and a third preset reference voltage; and a lamp control pulse generator generating a pulse signal having a duty controlled according to one of the first error voltage and second error voltage.
    Type: Application
    Filed: June 20, 2007
    Publication date: December 20, 2007
    Inventors: Yu Jin Jang, Byoung Own Min, Sang Cheol Shin, Jung Chul Gong
  • Patent number: 7308044
    Abstract: A technique for receiving differential multi-PAM signals is disclosed. In one particular exemplary embodiment, the technique may be realized as a differential multi-PAM extractor circuit. In this particular exemplary embodiment, the differential multi-PAM extractor circuit comprises an upper LSB sampler circuit configured to receive a differential multi-PAM input signal and a first differential reference signal, and to generate a first differential sampled output signal. The differential multi-PAM extractor circuit also comprises a lower LSB sampler circuit configured to receive the differential multi-PAM input signal and a second differential reference signal, and to generate a second differential sampled output signal.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: December 11, 2007
    Assignee: Rambus Inc
    Inventors: Jared LeVan Zerbe, Grace Tsang, Mark Horowitz, Bruno Werner Garlepp, Carl William Werner
  • Patent number: 7307867
    Abstract: An over-driven access method and device for ferroelectric memory. When accessing the data stored in a ferroelectric memory, the invention further provides an over-driven current to slightly reduce/raise the voltages in bit lines BL and BL? to further enlarge the voltage difference therebetween after having raised the plate-line/bit-line voltage using the plate-line/bit-line driven method.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: December 11, 2007
    Assignee: Macronix International Co., Ltd.
    Inventors: Chin-Hsi Lin, Chi-Ming Weng
  • Patent number: 7298180
    Abstract: A latch type sense amplifier includes a latch unit, an amplifying unit and a circuit module for charging or discharging the latch unit. The latch unit is configured by two sets of serially coupled PMOS and NMOS transistors, whose gates and drains are cross-coupled. The amplifying unit is coupled between the latch unit and a complementary power supply for controlling the latch unit in response to a bit line signal and a complementary bit line signal. The circuit module is designed to charge or discharge the data storage node and the complementary data storage node of the latch unit in response to the bit line signal and the complementary bit line signal, without using a current path across the NMOS transistors therein, such that the data storage node and the complementary data storage node are charged or discharged in a manner insensitive to a mismatch between the two NMOS transistors.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: November 20, 2007
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Lee Cheng Hung
  • Patent number: 7295043
    Abstract: A differential output circuit includes first and second inputs, first and second outputs, a resistor element connected between the outputs, first and second N-channel MISFETs, and first and second P-channel MISFETs. The inputs respectively receive first and second complementary input signals. The first N-channel MISFET has a source connected to the first input, a gate receiving a power supply potential, and a drain connected to the first output. The second N-channel MISFET has a source connected to the second input, a gate receiving the power supply potential, and a drain connected to the second output. The first P-channel MISFET has a source receiving the power supply potential, a gate connected to the second input, and a drain connected to the first output. The second P-channel MISFET has a source receiving the power supply potential, a gate connected to the first input, and a drain connected to the second output.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: November 13, 2007
    Assignee: NEC Electronics Corporation
    Inventor: Yasushi Aoki
  • Patent number: 7292083
    Abstract: A circuit and a method are provided to produce a novel comparator with Schmitt trigger hysteresis character. The circuit includes a current source which controls the magnitude of current flow through this comparator circuit. It has a first logic device which is turned ON by a reference voltage, and a second logic device is turned ON by a comparator input voltage. A first feedback device is turned ON by a negative comparator output. A first parallel resistor is connected in parallel to the first feedback device. A second feedback device is turned ON by a positive comparator output. A second parallel resistor is connected in parallel to the second feedback device. The first and second parallel resistors are used to provide the differential comparator with switching voltage offsets which result in the Schmitt trigger hysteresis character.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: November 6, 2007
    Assignee: Etron Technology, Inc.
    Inventors: Ming Hung Wang, Yen-An Chang
  • Patent number: 7283596
    Abstract: A PAM-4 data slicer includes first, second, and third comparators which provide first, second, and third thresholds, respectively. Each of the comparators has an offset. The first and third comparators have an offset generating arrangement at their outputs to provide the first and third comparator circuits with symmetrical offsets.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: October 16, 2007
    Assignee: Avago Technologies General IP (Singapore) Pte Ltd
    Inventor: William W. Brown
  • Patent number: 7274220
    Abstract: A sense amplifier for use in a memory device and in a memory-resident system. The sense amplifier operates on a lower voltage consistent with the voltage range of the differential input data and the sense amplifier further operates on a higher voltage to level-shift the output signal concurrently with the sensing operation. The sense amplifier includes a pair of differential cross-coupled inverters whose inputs are coupled to receive the data from the memory. Once the input nodes of the cross-coupled inverters are charged, the cross-coupled inverters are further coupled to pull-up and pull-down circuits that span the higher voltage range for performing the level-shifting functionality. In order to recondition the sense amplifier for a subsequent sensing process, a clamp circuit shorts the level-shifted outputs together to prevent a higher voltage level from being inadvertently passed to the memory device when isolating pass gates are reactivated.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: September 25, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Dean D. Gans
  • Patent number: 7271623
    Abstract: A receiver includes clocked, differential equalization circuitry to compensate for signal attenuation that varies with the frequency of the input signal received over a respective communication channel. The incoming signal is split into filtered and unfiltered signal components. Separate current-steering transistors coupled in parallel amplify the filtered and unfiltered components and sum the results. The filter or filters used to separate the signal components may be tunable, e.g. using voltage-controlled filter components. The ratio of device sizes for the current-steering transistors sets the magnitude of the boost applied to high-frequency components. The embodiments include adjustable or programmable current-steering networks to facilitate adjustments that accommodate the unique characteristics of individual communication channels.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: September 18, 2007
    Assignee: Rambus Inc.
    Inventor: Robert E. Palmer
  • Patent number: 7262651
    Abstract: An input buffer circuit achieving rail-to-rail operation maintains a uniform common mode output voltage even though an input signal having any voltage level is inputted. The input buffer circuit has a differential amplifier structure receiving two differential input signals. A first input part has a first inverter circuit into which a first differential input signal is inputted, and a second input part has a second inverter circuit into which the second differential input signal is inputted. The first inverter circuit has a first output node connected to a diode structure having an operating current twice the operating current of the first inverter circuit, and outputs a first output signal. Rail-to-rail operation is achieved, and a common mode output voltage is provided uniformly, with reduced current consumption.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: August 28, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Hyuk-Joon Kwon
  • Patent number: 7254169
    Abstract: A loss-of-signal (LOS) condition is detected by sampling input data for a predetermined time period, comparing a magnitude of the sampled input data to a threshold signal strength level, and asserting a LOS indication if the number of samples that have signal strength less than the threshold signal strength level is less than a predetermined value.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: August 7, 2007
    Assignee: Silicon Laboratories Inc.
    Inventors: Philip David Steiner, Michael H. Perrott, Vadim Gutnik
  • Patent number: 7250791
    Abstract: Current feedback amplifiers circuits that generate common mode (CM) and/or differential mode (DM) currents are provided herein. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures and the claims.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: July 31, 2007
    Assignee: Intersil Americas Inc.
    Inventor: Jeffrey S. Lehto
  • Patent number: 7242629
    Abstract: A sense amplifier circuit comprises (1) an isolation device comprising a control terminal and first and second terminals, the first terminal of the isolation device coupled to a signal line, (2) a gated diode comprising first and second terminals, the first terminal of the gated diode coupled to the second terminal of the isolation device, and the second terminal of the gated diode coupled to a set line; and (3) control circuitry coupled to the control terminal of the isolation device and adapted to control voltage on the control terminal of the isolation device in order to enable and disable the isolation device. A latch circuit further comprises a precharge device comprising a control terminal and first and second terminals, the first terminal of the precharge device coupled to a power supply voltage, and the second terminal of the precharge device coupled to the first terminal of the isolation device.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: July 10, 2007
    Assignee: International Business Machines Corporation
    Inventors: Wing K. Luk, Leland Chang, Robert H. Dennard, Robert Montoye
  • Patent number: 7230868
    Abstract: An amplifier circuit includes an amplifier section (700), an equalization section (770), and an activation section (720). The P-channel transistors (702, 704) of the amplifier section are coupled to a supply terminal (802). The N-channel transistors (706, 708) of the amplifier section are coupled between the P-channel transistors and the first and second input terminals (760, 762), respectively. In the activation section, first and second pull down transistors (722, 724) are coupled between the first and second input terminals, respectively, and a second power supply terminal (726), and third pull down transistor between the first and second input terminals. The control gates of the first, second and third pull down transistors are coupled to each other. In operation, a voltage signal applied to the first and second input terminals is amplified by the N-channel transistors. A control signal is then applied to couple the first and second input terminals to a supply voltage.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: June 12, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Sudhir K. Madan, Bryan Sheffield
  • Patent number: 7230989
    Abstract: A digital communication system for transmitting and receiving Digital Visual Interface (DVI) communication data signals and Display Data Channel (DDC) communication signals over a transmission line comprises an open-loop equalizer circuit and a DDC extension circuit. The open-loop equalizer circuit is operable to receive DVI communication signals transmitted over the transmission line and output equalized DVI communication data signals. The DDC extension circuit is operable to inject a boost current at the receive end of the transmission line during a positive transition in the DDC communication signal, and clamp the receive end of the transmission line during a negative transition of the DDC communication signal.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: June 12, 2007
    Assignee: Gennum Corporation
    Inventors: Aapoolcoyuz Biman, John Hudson, Eliyahu D. Zamir, Stephen P. Webster
  • Patent number: 7212038
    Abstract: A line driver (3) for transmitting data with high bit rates, in particular for wire-bound data transmission in the full-duplex process, comprises a differential pair with differential pair transistors (14, 15) for generating transmission impulses as a function of the data to be transmitted, whereby the transmission impulses are preferably output via cascode transistors (16, 17), each with the differential pair transistors (14, 15) forming a cascode circuit, onto the data transmission line (8, 9) connected to the line driver (3).
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: May 1, 2007
    Assignee: Infineon Technologies AG
    Inventors: Peter Gregorius, Armin Hanneberg, Peter Laaser
  • Patent number: 7208980
    Abstract: A differential comparator with reduced offset. The differential comparator includes a first transistor coupled to a first input current and a second transistor coupled to a second input current. The first and second transistors are biased as diodes during a reset phase to store an offset voltage on parasitic capacitances of the first and second transistors. The first and second transistors are connected together as a latch to provide an output during a latch phase. Drain currents of the first and the second transistors substantially equal the first and the second input currents, respectively, during the reset phase and at the beginning of the latch phase. During the latch phase, currents approximately twice as large as differential-mode signal currents provided by the first and the second input currents are provided to the first and the second transistors, respectively.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: April 24, 2007
    Assignee: Broadcom Corporation
    Inventor: Jan Mulder
  • Patent number: 7199657
    Abstract: An amplification apparatus is provided that includes a plurality of gain stages including a first gain stage having first and second transistors and a second gain stage having third and fourth transistors. A plurality of replica stages may also be provided that includes a first replica stage and a second replica stage. Each replica stage may correspond/match one of the plurality of gain stages. An amplifying device may be provided to adjust a body potential of at least the first transistor of the first gain based on an output of the first replica stage and an output of the second replica stage.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: April 3, 2007
    Assignee: Intel Corporation
    Inventors: Siva G. Narendra, Vivek K. De
  • Patent number: 7190193
    Abstract: A differential amplifier is configured to receive an input signal whose magnitude is referenced between a reference voltage and a first power supply magnitude. A differential current conducted by the differential amplifier induces current to be conducted by a first current mirror, which in turn induces current to be conducted by a second current mirror. The current conducted by the second current mirror produces an output signal that is referenced between the reference voltage and a second power supply magnitude.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: March 13, 2007
    Assignee: Xilinx, Inc.
    Inventor: James P. Ross
  • Patent number: 7187206
    Abstract: Aspects of saving power in a serial link transmitter are described. The aspects include providing a parallel arrangement of segments, each segment comprising prebuffer and output stage circuitry of the serial link transmitter and each segment enabled independently to achieve multiple power levels and multiple levels of pre-emphasis while maintaining a substantially constant propagation delay in a signal path of the serial link transmitter. Further aspects include providing a bypass path in the prebuffer stage circuitry to implement a controllable idle state in the segments and tail current and resistive load elements in the prebuffer circuitry as sectioned portions for slew rate control capability. Also included is provision of a control element with pre-emphasis delay circuitry in the transmitter signal path to allow inversion of a last delayed bit of the pre-emphasis delay circuitry to achieve a polarity change of a pre-emphasis weight.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: March 6, 2007
    Assignee: International Business Machines Corporation
    Inventors: Steven M. Clements, Carrie E. Cox, Hayden C. Cranford, Jr.
  • Patent number: 7187207
    Abstract: The CML (current mode logic) to CMOS converter with a leakage balancing transistor for jitter reduction includes: a differential input stage; an output stage having a first branch coupled to a first output of the differential input stage and a second branch coupled to a second output of the differential input stage; and a leakage balancing transistor coupled to the first branch of the output stage.
    Type: Grant
    Filed: June 27, 2005
    Date of Patent: March 6, 2007
    Assignee: Texas Instruments Incorporated
    Inventor: Matthew D. Rowley
  • Patent number: 7183812
    Abstract: Comparator systems are provided that include cross-coupled transistors which respond to a differential network that receives an input signal. The systems further include a control transistor connected across the cross-coupled transistors and a bias network configured to apply a bias voltage to the control transistor that is substantially the voltage across two transistors which are each biased into saturation. It has been found that this bias during the systems' acquire phase substantially stabilizes the systems' gain over variations in their total environment and that this stabilization enhances the systems' performance.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: February 27, 2007
    Assignee: Analog Devices, Inc.
    Inventor: David Graham Nairn
  • Patent number: 7180804
    Abstract: A system and method for sensing a current. The system includes an operational amplifier including a first input terminal, a second input terminal, and a first output terminal. The first input terminal is biased to a predetermined voltage, and the second input terminal and the first output terminal are directly connected. Additionally, the system includes a switch coupled to the first output terminal and a first node. The switch is controlled by at least a first control signal. Moreover, the system includes a comparator including a third input terminal, a fourth input terminal, and at least a second output terminal. The comparator is configured to receive a first input signal at the third input terminal and a second input signal at the fourth input terminal. The first input signal and the second input signal are associated with the first node and the predetermined voltage.
    Type: Grant
    Filed: October 17, 2005
    Date of Patent: February 20, 2007
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Wenzhe Luo, Paul Ouyang
  • Patent number: 7180310
    Abstract: There is provided an amplitude varying driver circuit operable to output an output signal, which is an amplified input signal being supplied. The amplitude varying driver circuit includes: a plurality of differential amplifiers provided in parallel with one another, wherein a signal corresponding to the input signal is input into each base terminal thereof; a resistor section, which is provided in series with the plurality of differential amplifiers, operable to establish potential of the output signal according to total current flowing to the plurality of differential amplifiers; and an amplitude control transistor, which is provided in series with the plurality of differential amplifiers, operable to define total current flowing to the plurality of differential amplifiers.
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: February 20, 2007
    Assignee: Advantest Corporation
    Inventor: Kei Sasajima
  • Patent number: 7167027
    Abstract: A latch-type level converter has a signal-input transistor, a latch, and a clock-input transistor. The signal-input transistor, which is a high-voltage transistor, receives an input signal, and the latch holds data of the input signal received by the signal-input transistor. The clock-input transistor controls the operation in accordance with a clock. According to the latch-type level converter, not only can low-amplitude signals be accurately amplified, but also input signals having a common-mode voltage higher than the supply voltage can be received.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: January 23, 2007
    Assignee: Fujitsu Limited
    Inventors: Shinichiro Matsuo, Hideki Takauchi
  • Patent number: 7158772
    Abstract: A Gaussian family filter (e.g. an equiripple filter) comprises a first pole, a second pole, a third pole and a signal combiner. The first pole has a biquadratic low pass characteristic and is configured to provide a first low pass signal. The second pole is coupled to the first low pass signal, the second pole having a first-order low pass characteristic, and providing a second low pass signal and a high pass signal. The third pole is coupled to the second low pass signal and has a biquadratic low pass characteristic for generating a third low pass signal. The signal combiner is configured to combine the third low pass signal and the high pass signal to provide a combined signal.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: January 2, 2007
    Assignee: LSI Logic Corporation
    Inventor: Brian Merrigan
  • Patent number: 7132860
    Abstract: Amplifier circuits that generate CM currents are provided. Amplifier circuits that generator DM currents are also provided. Fully differential current feedback amplifier circuits with separate CM and DM inputs are also provided. Such amplifier circuits combine the benefits of CFA designs, such as high slew rate and bandwidth, with independent control of DM and CM signals. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures and the claims.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: November 7, 2006
    Assignee: Intersil Americas Inc.
    Inventor: Jeffrey S. Lehto
  • Patent number: 7132859
    Abstract: Amplifier circuits that generate CM currents are provided. Amplifier circuits that generator DM currents are also provided. Fully differential current feedback amplifier circuits with separate CM and DM inputs are also provided. Such amplifier circuits combine the benefits of CFA designs, such as high slew rate and bandwidth, with independent control of DM and CM signals. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures and the claims.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: November 7, 2006
    Assignee: Intersil Americas Inc.
    Inventor: Jeffrey S. Lehto
  • Patent number: 7132861
    Abstract: A high speed, high sensitivity post amplifier as described herein includes a digitally-controlled DC offset cancellation feature. The amplifier circuit is configured to provide DC offset voltage levels in response to a digital control signal, where the digital control signal is generated based upon a data error metric such as bit error rate. The AC signal path and the DC offset adjustment signal path in the amplifier circuit are separated to facilitate operation with normal power supply voltages, and to achieve low power operation.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: November 7, 2006
    Assignee: Applied MicroCircuits Corporation
    Inventors: Wei Fu, Joseph James Balardeta
  • Patent number: 7116132
    Abstract: Amplifier circuits that generate CM currents are provided. Amplifier circuits that generator DM currents are also provided. Fully differential current feedback amplifier circuits with separate CM and DM inputs are also provided. Such amplifier circuits combine the benefits of CFA designs, such as high slew rate and bandwidth, with independent control of DM and CM signals. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures and the claims.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: October 3, 2006
    Assignee: Intersil Americas Inc.
    Inventor: Jeffrey S. Lehto
  • Patent number: 7116594
    Abstract: A sense amplifier circuit comprises (1) an isolation device comprising a control terminal and first and second terminals, the first terminal of the isolation device coupled to a signal line, (2) a gated diode comprising first and second terminals, the first terminal of the gated diode coupled to the second terminal of the isolation device, and the second terminal of the gated diode coupled to a set line; and (3) control circuitry coupled to the control terminal of the isolation device and adapted to control voltage on the control terminal of the isolation device in order to enable and disable the isolation device. A latch circuit further comprises a precharge device comprising a control terminal and first and second terminals, the first terminal of the precharge device coupled to a power supply voltage, and the second terminal of the precharge device coupled to the first terminal of the isolation device.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: October 3, 2006
    Assignee: International Business Machines Corporation
    Inventors: Wing K. Luk, Leland Chang, Robert H. Dennard, Robert Montoye
  • Patent number: 7106188
    Abstract: A method and apparatus are described for providing an activation signal based on a received radio frequency (RTF) signal. The apparatus includes an RF receiver configured to admit a received RF signal in a given frequency band and a converter configured to convert the admitted RF signal to a proportional signal. The apparatus also includes a low power comparator that has a first and second input and an output. A biasing and offset compensation circuit is configured to bias the proportional signal higher by an offset midrange voltage and bias the second input to an offset compensated voltage based on an offset between the inputs of the comparator. The comparator is configured to receive the biased proportional signal at the first input and produce the activation signal at the output when a voltage difference between the biased proportional signal and the offset compensated voltage exceeds a comparison voltage threshold.
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: September 12, 2006
    Inventors: Christopher M. Goggin, Patrick H. Stevens
  • Patent number: 7098698
    Abstract: To provide a semiconductor integrated circuit device and a sense amplifier in a memory in which a transistor element whose body potential is variable is built in an appropriate location and which can produce high speed operation with a layout advantage, an SOI transistor integrated circuit, each source of p-channel MOS transistor Qp1 and Qp2 is given a high potential level Vdd, for example, a supply-power potential, and respective body potentials are set as variable potentials corresponding to mutually inverse signal inputs Vin and Bvin, and a control signal CS is given to each gate. Also, each source and body of n-channel MOS transistor Qn1 and Qn2 are given a low potential level Vsa, for example, an earth potential, the signal inputs Vin and Bvin are supplied to respective gates. A connection node of these drains of the transistors Qp1 and Qn1 is connected to a signal output section Vout. Also, a connection node of the drains of the transistors Qp2 and Qn2 is connected to a signal output section BVout.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: August 29, 2006
    Assignee: Seiko Epson Corporation
    Inventor: Kazuo Taguchi
  • Patent number: 7095640
    Abstract: A multiple matchline sense circuit for detecting a single, more than one, or no match conditions during a search-and-compare operation of a content addressable memory is disclosed. The circuit compares the rising voltage rate of a multiple matchline to the rising voltage rate of a reference multiple matchline in order to generate a multibit result representing one of the three conditions. The circuit generates a self-timed control signal to end the search-and-compare operation, and to set the circuit to a precharge state.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: August 22, 2006
    Assignee: MOSAID Technologies Incorporated
    Inventors: Stanley Jeh-Chun Ma, Peter P. Ma
  • Patent number: 7091750
    Abstract: A sense amplifier according to the present invention for detecting a potential difference of signals input to a first input terminal and a second input terminal, includes a first means for applying voltages corresponding to threshold voltages of first and second transistors to gate-source voltages of the first and second transistors, and a second means for transferring signals input to the first and second input terminals to gates of the first and second transistors. In this case, a threshold variation of the first and second transistors is corrected.
    Type: Grant
    Filed: July 27, 2004
    Date of Patent: August 15, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yutaka Shionoiri, Kiyoshi Kato, Munehiro Azami
  • Patent number: 7084671
    Abstract: A Negative Bias Temperature Instability (NBTI) tolerant sense amplifier is provided. The sense amplifier includes an input stage having a pair of balanced isolation devices. Each of the balanced isolation devices has an input connected to receive a separate one of a pair of differential input signals. Each of the balanced isolation devices also has a gate that is connected to receive a common bias voltage. The sense amplifier further includes a sense stage connected to the input stage. The sense stage is configured to receive and amplify a higher signal to be provided by the pair of balanced isolation devices. The sense amplifier is also equipped to operate a low voltage levels.
    Type: Grant
    Filed: January 26, 2004
    Date of Patent: August 1, 2006
    Assignee: Sun Microsystems, Inc.
    Inventors: Dennis Wendell, Howard L. Levy, Jin-Uk Shin
  • Patent number: 7061283
    Abstract: A system for driving a differential signal on a signal line and converting the differential signal from a rail-to-rail differential signal to a small signal differential signal is described. An exemplary embodiment of the circuit includes a first programmable differential driver circuit receiving a differential input; a programmable delay circuit receiving the differential input and coupled to a second programmable differential driver circuit; and a summation circuit coupled to the first and second differential driver circuits.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: June 13, 2006
    Assignee: Xilinx, Inc.
    Inventors: Atul V. Ghia, Adebabay M. Bekele
  • Patent number: RE40075
    Abstract: A method of processing data having one of four voltage levels stored in a DRAM cell is comprised of sensing whether or not the data voltage is above or below a voltage level midway between a highest and a lowest of the four levels, setting the voltage on a reference line higher than the lowest and lower than the next highest of the four levels in the event the data voltage is below the midway voltage level, and setting the voltage on the reference line higher than the second highest and lower than the highest of the four levels in the event the data voltage is above the midway point, and sensing whether the data voltage is higher or lower than the reference line, whereby which of the four levels the data occupies is read.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: February 19, 2008
    Assignee: MOSAID Technologies, Incorporated
    Inventor: Peter B. Gillingham