Silicon Oxides Or Nitrides Patents (Class 427/579)
  • Patent number: 11929234
    Abstract: A plasma processing apparatus capable of improving the in-plane uniformity of plasma and a lower stage used for the plasma processing apparatus are anticipated. In an exemplary embodiment, the lower stage is for a lower stage that generates plasma with an upper electrode. The lower stage includes: a lower dielectric body formed of ceramic, a lower electrode embedded in the lower dielectric body, and a heating element embedded in the lower dielectric body. The separation distance between the top surface of the lower dielectric body at the outer edge position thereof and the lower electrode is smaller than the separation distance between the top surface of the lower dielectric body in the central region thereof and the lower electrode. The lower electrode has an inclination region inclined with respect to the top surface between the outer edge position and the central region.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: March 12, 2024
    Assignees: TOKYO ELECTRON LIMITED, TOHOKU UNIVERSITY
    Inventors: Taro Ikeda, Sumi Tanaka, Satoru Kawakami, Masaki Hirayama
  • Patent number: 11718911
    Abstract: A deposition method includes causing aminosilane gas to be adsorbed on a substrate in which a recessed portion is formed on a surface of the substrate; causing a first silicon oxide film to be stacked on the substrate by supplying oxidation gas to the substrate to oxidize the aminosilane gas adsorbed on the substrate; and performing a reforming process on the first silicon oxide film by activating, by plasma, a first mixed gas including helium and oxygen, and supplying the first mixed gas to the first silicon oxide film.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: August 8, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Takashi Chiba, Jun Sato
  • Patent number: 11489142
    Abstract: Provided is an organic electroluminescent display device, including a substrate, an organic light-emitting device on the substrate, and an encapsulation layer formed on the organic light-emitting device and the substrate. The encapsulation layer includes an inorganic layer and a polymer organic layer alternatingly stacked with an intermediate layer formed of a first organic monomer between the inorganic layer and the polymer organic layer, and one surface of the intermediate layer is bonded to the inorganic layer through bonding sites on a surface of the inorganic layer and another surface of the intermediate layer is bonded to the organic layer by polymerization.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: November 1, 2022
    Assignee: Samsung Display Co., Ltd.
    Inventors: Min-Ho Oh, Yoon-Hyeung Cho, Yong-Tak Kim, So-Young Lee, Jong-Woo Kim, Ji-Young Moon
  • Patent number: 11476090
    Abstract: Embodiments provided herein generally include apparatus, plasma processing systems and methods for generation of a waveform for plasma processing of a substrate in a processing chamber. One embodiment includes a waveform generator having a voltage source circuitry, a first switch coupled between the voltage source circuitry and a first output node of the waveform generator, the first output node being configured to be coupled to a chamber, and a second switch coupled between the first output node and electrical ground node. The waveform generator also includes a third switch coupled between the voltage source circuitry and a second output node of the waveform generator, the second output node being configured to be coupled to the chamber, and a fourth switch coupled between the second output node and the electrical ground node.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: October 18, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Kartik Ramaswamy, Yang Yang, Yue Guo
  • Patent number: 11420217
    Abstract: Embodiments of showerheads for use in a process chamber are provided herein. In some embodiments, a showerhead includes a first spiral channel extending from a central region to a peripheral region of the showerhead; a second spiral channel extending from a central region to a peripheral region of the showerhead, wherein the second spiral channel is interleaved with the first spiral channel and fluidly independent from the first spiral channel; a plurality of first channels extending from the first spiral channel to a plurality of first gas distribution holes on a lower surface of the showerhead, wherein each first channel is a singular channel extending at an angle; and a plurality of second channels extending from the second spiral channel to a plurality of second gas distribution holes on the lower surface of the showerhead, wherein each second channel is a singular channel extending at an angle.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: August 23, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Muhannad Mustafa, Muhammad M. Rasheed
  • Patent number: 11414742
    Abstract: There is provided a substrate processing apparatus which includes: a substrate mounting table installed in a vacuum vessel; a gas supply part configured to supply a processing gas into the vacuum vessel; a vacuum-exhausting part configured to exhaust the interior of the vacuum vessel; an elevating member configured to lift up and down a substrate while holding the substrate mounted on the mounting table; and a control part configured to output a control signal to execute a first step of supplying the processing gas onto the substrate and setting an internal pressure of the vacuum vessel to a first pressure, a second step of changing the internal pressure to a second pressure lower than the first pressure, and a third step of lifting up the substrate from the mounting table after the first step and before the second step or in parallel with the second step.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: August 16, 2022
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Hideaki Yamasaki, Tomonari Urano
  • Patent number: 11393676
    Abstract: Provided are a composition for depositing a silicon-containing thin film containing a bis(aminosilyl)alkylamine compound and a method for manufacturing a silicon-containing thin film using the same, and more particularly, a composition for depositing a silicon-containing thin film, containing the bis(aminosilyl)alkylamine compound capable of being usefully used as a precursor of the silicon-containing thin film, and a method for manufacturing a silicon-containing thin film using the same.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: July 19, 2022
    Assignee: DNF CO., LTD.
    Inventors: Sung Gi Kim, Jeong Joo Park, Joong Jin Park, Se Jin Jang, Byeong-Il Yang, Sang-Do Lee, Sam Dong Lee, Sang Ick Lee, Myong Woon Kim
  • Patent number: 11384433
    Abstract: A gas injection module includes a showerhead having first injection holes on a first region of the showerhead and second injection holes on a second region of the showerhead, the second region being outside the first region, a first distribution plate on the showerhead and having first and second upper passages respectively connected to the first and second injection holes, and a flow rate controller on the first and second upper passages of the first distribution plate. The flow rate controller reduces a difference in pressure within the first and second upper passages so that the gas may have similar flow rates within the first and second injection holes.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: July 12, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Minkyu Sung, Sung-Ki Lee, Dougyong Sung, Sang-Ho Lee, Kangmin Jeon
  • Patent number: 11264275
    Abstract: Some embodiments include an integrated assembly having a stack of alternating first and second levels. The first levels contain conductive material and the second levels contain insulative material. At least some of the first and second levels are configured as steps. Each of the steps has one of the second levels over an associated one of the first levels. A layer is over the steps and is spaced from the stack by an intervening insulative region. Insulative material is over the layer. Conductive interconnects extend through the insulative material, through the layer, through the intervening insulative region and to the conductive material within the first levels of the steps. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: March 1, 2022
    Assignee: Micron Technology, Inc.
    Inventors: John D. Hopkins, Lifang Xu, Nancy M. Lomeli
  • Patent number: 11139162
    Abstract: Described herein are precursors and methods for forming silicon-containing films. In one aspect, the precursor comprises a compound represented by one of following Formulae A through E below: In one particular embodiment, the organoaminosilane precursors are effective for a low temperature (e.g., 350° C. or less), atomic layer deposition (ALD) or plasma enhanced atomic layer deposition (PEALD) of a silicon-containing film. In addition, described herein is a composition comprising an organoaminosilane described herein wherein the organoaminosilane is substantially free of at least one selected from the amines, halides (e.g., Cl, F, I, Br), higher molecular weight species, and trace metals.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: October 5, 2021
    Assignee: Versum Materials US, LLC
    Inventors: Mark Leonard O'Neill, Manchao Xiao, Xinjian Lei, Richard Ho, Haripin Chandra, Matthew R. MacDonald, Meiliang Wang
  • Patent number: 11104990
    Abstract: Described herein are conformal films and methods for forming a conformal Group 4, 5, 6, 13 metal or metalloid doped silicon nitride dielectric film. In one aspect, there is provided a method of forming an aluminum silicon nitride film comprising the steps of: providing a substrate in a reactor; introducing into the reactor an at least one metal precursor which reacts on at least a portion of the surface of the substrate to provide a chemisorbed layer; purging the reactor with a purge gas; introducing into the reactor an organoaminosilane precursors to react on at least a portion of the surface of the substrate to provide a chemisorbed layer; introducing a plasma comprising nitrogen and an inert gas into the reactor to react with at least a portion of the chemisorbed layer and provide at least one reactive site wherein the plasma is generated at a power density ranging from about 0.01 to about 1.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: August 31, 2021
    Assignee: VERSUM MATERIALS US, LLC
    Inventors: Xinjian Lei, Moo-Sung Kim, Jianheng Li
  • Patent number: 10934621
    Abstract: A gas injection module includes a showerhead having first injection holes on a first region of the showerhead and second injection holes on a second region of the showerhead, the second region being outside the first region, a first distribution plate on the showerhead and having first and second upper passages respectively connected to the first and second injection holes, and a flow rate controller on the first and second upper passages of the first distribution plate. The flow rate controller reduces a difference in pressure within the first and second upper passages so that the gas may have similar flow rates within the first and second injection holes.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: March 2, 2021
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Minkyu Sung, Sung-Ki Lee, Dougyong Sung, Sang-Ho Lee, Kangmin Jeon
  • Patent number: 10903468
    Abstract: The present invention relates to a plasma generating apparatus for a secondary battery. The plasma generating apparatus for the secondary battery comprises a transfer roller that transfers a separator, a metal member disposed within the transfer roller, a plasma generating member that interacts with the metal member to generate a plasma and irradiate the generated plasma onto a surface of the separator, and a protrusion member that causes a portion of the separator closely attached to the transfer roller to protrude and forms an adhesion area, which is adhesive, and a non-adhesion area, which is non-adhesive or less adhesive than the adhesion area, by allowing the plasma to be irradiated onto the adhesion area and no plasma or less plasma to be irradiated onto the non-adhesion area.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: January 26, 2021
    Assignee: LG CHEM, LTD.
    Inventors: Duck Hoe Kim, Min Wook Kim, Ju Hyeon Cho, Cha Hun Ku, Sang Kyun Lee
  • Patent number: 10748758
    Abstract: A method for depositing a silicon nitride film is provided. In the method, an adsorption blocking region is formed such that a chlorine-containing gas conformally adsorbs on a surface of a substrate by adsorbing chlorine radicals on the surface of the substrate. A source gas that contains silicon and chlorine is adsorbed on the adsorption blocking region adsorbed on the surface of the substrate. A silicon nitride film is deposited on the surface of the substrate by supplying a nitriding gas activated by plasma to the source gas adsorbed on the surface of the substrate.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: August 18, 2020
    Assignee: Tokyo Electron Limited
    Inventors: Hitoshi Kato, Yutaka Takahashi, Kazumi Kubo
  • Patent number: 10643825
    Abstract: A particle generation preventing method for preventing particle generation in a vacuum apparatus including an alumite-treated component is provided. The particle generation preventing method includes an evacuation step of evacuating the vacuum apparatus to reduce a pressure within the vacuum apparatus to less than or equal to 1.3×10?1 Pa (1 mTorr), a pressure increasing step of increasing the pressure within the vacuum apparatus to atmospheric pressure after the evacuation step, and a moisture adhesion step of causing moisture to be adhered to the alumite-treated component after the pressure increasing step.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: May 5, 2020
    Assignee: Tokyo Electron Limited
    Inventors: Takashi Tetsuka, Hiroshi Nagaike, Masatomo Kita, Chihiro Sato, Naoya Suenaga
  • Patent number: 10615085
    Abstract: An embodiment provides a method of predicting a thickness of an oxide layer of a silicon wafer including: aging a heat treatment furnace (furnace); measuring a thickness of each of the oxide layers after disposing a plurality of reference wafers in slots of a heat treatment boat in the furnace and forming oxide layers; and measuring a thickness of each of the oxide layers after disposing the plurality of reference wafers and test wafers in the slots of the heat treatment boat in the furnace and forming oxide layers.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: April 7, 2020
    Assignee: SK Siltron Co., Ltd.
    Inventors: Jung Kil Park, Sung Woo Jung, Ja Young Kim
  • Patent number: 10559459
    Abstract: One object of the present invention is to provide a method for producing a silicon nitride film having a high hydrofluoric acid resistance, a high moisture resistance and an appropriate internal stress on a substrate of which the temperature is controlled at 250° C. or lower, the present invention provides a method for producing a silicon nitride film (30) by a plasma chemical vapor deposition method, wherein a processing gas obtained by adding a hydrogen reducing gas in a range of 200 to 2000 volumetric flow rate to an organosilane gas of 1 volumetric flow rate is used, a pressure in a process chamber (40) accommodating the substrate (20) is adjusted to be in a range of 35 to 400 Pa, and a density of high-frequency electric power applied to an electrode installed in the process chamber (40) is adjusted to be in a range of 0.2 to 3.5 W/cm2.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: February 11, 2020
    Assignees: TAIYO NIPPON SANSO CORPORATION, SPP TECHNOLOGIES CO., LTD.
    Inventors: Hiroshi Taka, Masaya Yamawaki, Shoichi Murakami, Masayasu Hatashita
  • Patent number: 10464953
    Abstract: Described herein are compositions and methods for forming silicon oxide films. In one aspect, the film is deposited from at least one precursor, wherein the at least one precursor has a structure represented by Formula A: wherein R, R1, R2, R3, R4, and R5 are defined herein.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: November 5, 2019
    Assignee: VERSUM MATERIALS US, LLC
    Inventors: Meiliang Wang, Xinjian Lei, Manchao Xiao, Suresh Kalpatu Rajaraman
  • Patent number: 10431452
    Abstract: A protective film forming method is provided. In the method, substantially an entire surface of a silicon-containing underfilm is terminated with fluorine by supplying a fluorine-containing gas to the silicon-containing underfilm formed on a substrate having a surface including a plurality of recesses and a flat surface provided between the adjacent recesses. A surface of the silicon-containing underfilm formed on the flat surface of the substrate is nitrided by supplying a nitriding gas converted to plasma to the silicon-containing underfilm terminated with fluorine such that a silicon adsorption site is formed on the surface of the silicon-containing underfilm formed on the flat surface of the substrate. A silicon-containing gas is adsorbed on the silicon adsorption site by supplying the silicon-containing gas to the silicon-containing underfilm.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: October 1, 2019
    Assignee: Tokyo Electron Limited
    Inventors: Yutaka Takahashi, Masahiro Murata
  • Patent number: 10050230
    Abstract: The present invention provides an OLED display and a manufacturing method thereof. The OLED display of the present invention is such that in a thin film encapsulation layer, an inorganic passivation that is located under and adjacent to each organic buffer layer forms a stepped zone at a portion between an outer edge of the organic buffer layer and an outer edge of the inorganic passivation layer and each stepped zone is provided with a DLC layer that covers the stepped zone. In other words, the present invention uses DLC for later side encapsulation and in the thin film encapsulation layer, each organic buffer layer is provided, on an outer side thereof, with a DLC layer to thereby effectively block external moisture and oxygen from attacking the OLED device from a lateral side and also to eliminate an issue of loss for light of a top emission device to travel through DLC.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: August 14, 2018
    Assignee: WUHAN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Jiangjiang Jin, Hsianglun Hsu
  • Patent number: 9991154
    Abstract: A method for fabricating a shallow trench isolation (STI) structure comprises the following steps. A silane-base precursor having a volumetric flowrate of 500 to 750 sccm and a nitrogen-base precursor having a volumetric flowrate of 300 to 600 sccm are introduced and mixed under a first pressure ranging from 0.5 to 1.5 torr at a first temperature ranging from 30 to 105 centigrade to deposit a flowable dielectric layer in a trench of a substrate. Then, ozone gas and oxygen gas are introduced and mixed under a second pressure ranging from 300 to 650 torr at a second temperature ranging from 50 to 250 centigrade to treat the flowable dielectric layer, wherein a volumetric flowrate ratio of ozone gas and oxygen gas ranges from 1:1 to 3:1. A method for fabricating a FinFET is provided.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: June 5, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei Ken Lin, Jia-Ming Lin, Hsien-Che Teng, Yung-Chou Shih, Kun-Dian She, Lichia Yang, Yun-Wen Chu
  • Patent number: 9922820
    Abstract: A method of forming a silicon nitride film on a substrate in a vacuum vessel, includes forming the silicon nitride film by depositing a layer of reaction product by repeating a cycle a plurality of times. The cycle includes a first process of supplying a gas of a silicon raw material to the substrate to adsorb the silicon raw material to the substrate, subsequently, a second process of supplying a gas of ammonia in a non-plasma state to the substrate to physically adsorb the gas of the ammonia to the substrate, and subsequently, a third process of supplying active species obtained by converting a plasma forming gas containing a hydrogen gas for forming plasma into plasma to the substrate and causing the ammonia physically adsorbed to the substrate to react with the silicon raw material to form the layer of reaction product.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: March 20, 2018
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Noriaki Fukiage, Takayuki Karakawa, Toyohiro Kamada, Akihiro Kuribayashi, Takeshi Oyama, Jun Ogawa
  • Patent number: 9831068
    Abstract: A method activates the inner surface of a substrate tube via plasma etching with a fluorine-containing etching gas. An exemplary method includes the steps of (i) supplying a supply flow of gas to the interior of a substrate tube, wherein the supply flow includes a main gas flow and a fluorine-containing etching gas flow, (ii) inducing a plasma via electromagnetic radiation to create a plasma zone within the substrate tube's interior, and (iii) longitudinally reciprocating the plasma zone over the length of the substrate tube between a reversal point near the supply side and a reversal point near the discharge side of the substrate tube. The flow of the fluorine-containing etching gas is typically provided when the plasma zone is near the supply side reversal point.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: November 28, 2017
    Assignee: Draka Comteq, B.V.
    Inventors: Igor Milicevic, Gertjan Krabshuis, Mattheus Jacobus Nicolaas Van Stralen, Peter Gerharts, Johannes Antoon Hartsuiker
  • Patent number: 9498846
    Abstract: Systems and methods for preventing or reducing contamination enhanced laser induced damage (C-LID) to optical components are provided including a housing enclosing an optical component, a container configured to hold a gas phase additive and operatively coupled to the housing; and a delivery system configured to introduce the gas phase additive from the container into the housing and to maintain the gas phase additive at a pre-selected partial pressure within the housing. The gas phase additive may have a greater affinity for the optical component than does a contaminant and may be present in an amount sufficient to inhibit laser induced damage resulting from contact between the contaminant and the optical component. The housing may be configured to maintain a sealed gas environment or vacuum.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: November 22, 2016
    Assignee: The Aerospace Corporation
    Inventors: Bruce H. Weiller, Randy M. Villahermosa, Jesse D. Fowler
  • Patent number: 9373514
    Abstract: An electronic device includes a substrate with a semiconducting surface having a plurality of fin-type projections coextending in a first direction through a memory cell region and select gate regions. The electronic device further includes a dielectric isolation material disposed in spaces between the projections. In the electronic device, the dielectric isolation material in the memory cell regions have a height less than a height of the projections in the memory cell regions, and the dielectric isolation material in the select gate regions have a height greater than or equal to than a height of the projections in the select gate regions. The electronic device further includes gate features disposed on the substrate within the memory cell region and the select gate regions over the projections and the dielectric isolation material, where the gate features coextend in a second direction transverse to the first direction.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: June 21, 2016
    Assignee: Cypress Semiconductor Corporation
    Inventors: Chun Chen, Shenqing Fang
  • Patent number: 9349587
    Abstract: In a low-temperature, a silicon nitride film having a low in-film chlorine (Cl) content and a high resistance to hydrogen fluoride (HF) is formed. The formation of the silicon nitride film includes (a) supplying a monochlorosilane (SiH3Cl or MCS) gas to a substrate disposed in a processing chamber, (b) supplying a plasma-excited hydrogen-containing gas to the substrate disposed in the processing chamber, (c) supplying a plasma-excited or heat-excited nitrogen-containing gas to the substrate disposed in the processing chamber, (d) supplying at least one of a plasma-excited nitrogen gas and a plasma-excited rare gas to the substrate disposed in the processing chamber, and (e) performing a cycle including the steps (a) through (d) a predetermined number of times to form a silicon nitride film on the substrate.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: May 24, 2016
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Yoshiro Hirose, Atsushi Sano, Kazuyuki Okuda, Kiyohiko Maeda
  • Patent number: 9245741
    Abstract: Disclosed is a method of forming a nitride film on an object to be processed (“processed object”). The method includes a step (step (a)) of exposing the processed object to dichlorosilane which is a precursor gas and a step (step (b)) of exposing the processed object to plasma of a processing gas which includes an ammonia gas and a hydrogen gas after step (a). Alternatively, step (a) and step (b) may be alternately repeated and a step of removing dichlorosilane (step (c)) may be further provided between step (a) and step (b).
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: January 26, 2016
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Takayuki Karakawa
  • Patent number: 9218966
    Abstract: To suppress a decrease in on-state current in a semiconductor device including an oxide semiconductor. Provided is a semiconductor device including the following: an oxide semiconductor film which serves as a semiconductor layer; a gate insulating film including an oxide containing silicon, over the oxide semiconductor film; a gate electrode which overlaps with at least the oxide semiconductor film, over the gate insulating film; and a source electrode and a drain electrode which are electrically connected to the oxide semiconductor film. In the semiconductor device, the oxide semiconductor film overlapping with at least the gate electrode includes a region in which a concentration of silicon distributed from the interface with the gate insulating film toward the inside of the oxide semiconductor film is lower than or equal to 1.1 at. %.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: December 22, 2015
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Tatsuya Honda, Masashi Tsubuku, Yusuke Nonaka, Shunpei Yamazaki
  • Patent number: 9219160
    Abstract: A decrease in on-state current in a semiconductor device including an oxide semiconductor film is suppressed. A transistor including an oxide semiconductor film, an insulating film which includes oxygen and silicon, a gate electrode adjacent to the oxide semiconductor film, the oxide semiconductor film provided to be in contact with the insulating film and overlap with at least the gate electrode, and a source electrode and a drain electrode electrically connected to the oxide semiconductor film. In the oxide semiconductor film, a first region which is provided to be in contact with the interface with the insulating film and have a thickness less than or equal to 5 nm has a silicon concentration lower than or equal to 1.0 at. %, and a region in the oxide semiconductor film other than the first region has lower silicon concentration than the first region.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: December 22, 2015
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Tatsuya Honda, Masashi Tsubuku, Yusuke Nonaka, Takashi Shimazu, Shunpei Yamazaki
  • Patent number: 9190298
    Abstract: A method of manufacturing a semiconductor device is provided. The method includes treating a surface of an insulating film formed on a substrate by supplying a first precursor including a predetermined element and a halogen group to the substrate, and forming a thin film including the predetermined element on the treated surface of the insulating film by performing a cycle a predetermined number of times. The cycle includes supplying a second precursor including the predetermined element and the halogen group to the substrate, and supplying a third precursor to the substrate.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: November 17, 2015
    Assignee: HITACHI KOKUSAI ELECTRIC INC.
    Inventors: Katsuyoshi Harada, Yoshiro Hirose, Tsukasa Kamakura, Atsushi Sano, Yugo Orihashi
  • Patent number: 9109754
    Abstract: Provided are gas distribution apparatus with a delivery channel having an inlet end, an outlet end and a plurality of apertures spaced along the length. The inlet end is connectable to an inlet gas source and the outlet end is connectable with a vacuum source. Also provided are gas distribution apparatus with spiral delivery channels, intertwined spiral delivery channels, splitting delivery channels, merging delivery channels and shaped delivery channels in which an inlet end and outlet end are configured for rapid exchange of gas within the delivery channels.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: August 18, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Joseph Yudovsky, Mei Chang, Faruk Gungor, Paul F. Ma, David Chu, Chien-Teh Kao, Hyman Lam, Dien-Yeh Wu
  • Publication number: 20150147484
    Abstract: Provided are methods for the deposition of films comprising SiCN. Certain methods involve exposing a substrate surface to a silicon precursor, wherein the silicon precursor is halogenated with Cl, Br or I, and the silicon precursor comprises a halogenated silane, a halogenated carbosilane, an halogenated aminosilane or a halogenated carbo-sillyl amine. Then, the substrate surface can be exposed to a nitrogen-containing plasma or a nitrogen precursor and densification plasma.
    Type: Application
    Filed: November 5, 2014
    Publication date: May 28, 2015
    Inventors: Victor Nguyen, Ning Li, Mihaela Balseanu, Li-Qun Xia, Mark Saly, David Thompson
  • Patent number: 9028924
    Abstract: Methods of forming a film stack may include the plasma accelerated deposition of a silicon nitride film formed from the reaction of nitrogen containing precursor with silicon containing precursor, the plasma accelerated substantial elimination of silicon containing precursor from the processing chamber, the plasma accelerated deposition of a silicon oxide film atop the silicon nitride film formed from the reaction of silicon containing precursor with oxidant, and the plasma accelerated substantial elimination of oxidant from the processing chamber. Process station apparatuses for forming a film stack of silicon nitride and silicon oxide films may include a processing chamber, one or more gas delivery lines, one or more RF generators, and a system controller having machine-readable media with instructions for operating the one or more gas delivery lines, and the one or more RF generators.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: May 12, 2015
    Assignee: Novellus Systems, Inc.
    Inventors: Jason Haverkamp, Pramod Subramonium, Joe Womack, Dong Niu, Keith Fox, John Alexy, Patrick Breiling, Jennifer O'Loughlin, Mandyam Sriram, George Andrew Antonelli, Bart van Schravendijk
  • Patent number: 9028925
    Abstract: A product having a functional layer and a method for fabricating the same. A method for fabricating a product having a functional layer includes the step of conducting a plasma reaction with titanium and silicon precursor compounds to form a coating on a substrate, such as a heat exchanger surface.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: May 12, 2015
    Assignee: LG Electronics Inc.
    Inventors: Jinhyouk Shin, MoonKap Lee, Junggeun Oh, Jeonggyu Kim
  • Publication number: 20150125628
    Abstract: Disclosed is a method of depositing a thin film, which includes supplying a purge gas and a source gas into a plurality of reactors for a first period, stopping supplying of the source gas, and supplying the purge gas and a reaction gas into the plurality of reactors for a second period, and supplying the reaction gas and plasma into the plurality of reactors for a third period.
    Type: Application
    Filed: May 23, 2014
    Publication date: May 7, 2015
    Applicant: ASM IP Holding B.V.
    Inventors: Dae Youn KIM, Seung Woo CHOI, Young Hoon KIM, Seiji OKURA, Hyung Wook NOH, Dong Seok KANG
  • Publication number: 20150125629
    Abstract: A method of depositing a thin film includes: repeating a first gas supply cycle a first plurality of times, the first gas supply cycle including supplying a source gas to a reaction space; supplying first plasma while supplying a reactant gas to the reaction space; repeating a second gas supply cycle a second plurality of times, the second gas supply cycle including supplying the source gas to the reaction space; and supplying second plasma while supplying the reactant gas to the reaction space, wherein the supplying of the first plasma includes supplying remote plasma, and the supplying of the second plasma includes supplying direct plasma.
    Type: Application
    Filed: October 29, 2014
    Publication date: May 7, 2015
    Inventors: Young Hoon KIM, Dae Youn Kim, Sang Wook Lee
  • Publication number: 20150110974
    Abstract: A plasma processing apparatus including: a chamber configured to provide a space for processing a substrate; a substrate stage configured to support the substrate within the chamber and including a first electrode, the first electrode configured to receive a first radio frequency signal; a second electrode disposed on an upper portion of the chamber to face the first electrode, the second electrode configured to receive a second radio frequency signal; a gas supply unit configured to supply a process gas onto the substrate within the chamber; and a thermal control unit configured to circulate a heat transfer medium through a first fluid passage provided in the first electrode and a second fluid passage provided in the second electrode to maintain the first and second electrodes at the same temperature.
    Type: Application
    Filed: July 29, 2014
    Publication date: April 23, 2015
    Inventors: Yong-Suk LEE, Suk-Won Jung, Myung-Soo Huh, Mi-Ra An
  • Patent number: 9011985
    Abstract: A process for producing a multilayer film which, even when bent, is less apt to decrease in barrier property or electrical conductivity. The process comprises forming a barrier film and a transparent conductive film on a resin film to produce a multilayer film. The barrier film is formed by a plasma enhanced CVD method which uses electric discharge between rolls. The transparent conductive film is preferably formed by physical vapor deposition. The resin film preferably is a polyester resin film or a polyolefin resin film.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: April 21, 2015
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Akira Hasegawa, Toshiya Kuroda, Takashi Sanada
  • Patent number: 9005719
    Abstract: Described herein are organoaminosilane precursors which can be used to deposit silicon containing films which contain silicon and methods for making these precursors. Also disclosed herein are deposition methods for making silicon-containing films or silicon containing films using the organoaminosilane precursors described herein. Also disclosed herein are the vessels that comprise the organoaminosilane precursors or a composition thereof that can be used, for example, to deliver the precursor to a reactor in order to deposit a silicon-containing film.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: April 14, 2015
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Manchao Xiao, Xinjian Lei, Bing Han, Mark Leonard O'Neill, Ronald Martin Pearlstein, Richard Ho, Haripin Chandra, Agnes Derecskei-Kovacs
  • Patent number: 8993072
    Abstract: Described herein are precursors and methods of forming films. In one aspect, there is provided a precursor having Formula I: XmR1nHpSi(NR2R3)4-m-n-p??I wherein X is selected from Cl, Br, I; R1 is selected from linear or branched C1-C10 alkyl group, a C2-C12 alkenyl group, a C2-C12 alkynyl group, a C4-C10 cyclic alkyl, and a C6-C10 aryl group; R2 is selected from a linear or branched C1-C10 alkyl, a C3-C12 alkenyl group, a C3-C12 alkynyl group, a C4-C10 cyclic alkyl group, and a C6-C10 aryl group; R3 is selected from a branched C3-C10 alkyl group, a C3-C12 alkenyl group, a C3-C12 alkynyl group, a C4-C10 cyclic alkyl group, and a C6-C10 aryl group; m is 1 or 2; n is 0, 1, or 2; p is 0, 1 or 2; and m+n+p is less than 4, wherein R2 and R3 are linked or not linked to form a ring.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: March 31, 2015
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Manchao Xiao, Xinjian Lei, Mark Leonard O'Neill, Bing Han, Ronald Martin Pearlstein, Haripin Chandra, Heather Regina Bowen, Agnes Derecskei-Kovacs
  • Patent number: 8986794
    Abstract: A vapor deposition apparatus efficiently performs a deposition process to form a thin film with improved characteristics on a substrate, and a method manufactures an organic light-emitting display apparatus by using such vapor deposition apparatus. The vapor deposition apparatus includes a body including an upper member and a lateral member coupled to the upper member; a receiving portion disposed to face one side of the lateral member; a stage disposed in the receiving portion and supporting the substrate; a plurality of first injection portions disposed in the lateral member and injecting at least one gas into a space between the lateral member and the upper member; a second injection portion disposed in the upper member and injecting at least one gas into the space between the lateral member and the upper member; and a plasma generating portion including a coil and a power source connected to the coil.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: March 24, 2015
    Assignees: Samsung Display Co., Ltd., Industry-University Cooperation Foundation Hanyang University Erica Campus
    Inventors: Sang-Joon Seo, Jae-Eung Oh
  • Publication number: 20150079311
    Abstract: A method for forming an oxide film by plasma-assisted processing includes: (i) supplying a precursor reactive to none of oxygen, CxOy, and NxOy (x and y are integers) without a plasma to a reaction space wherein a substrate is placed; (ii) exposing the precursor to a plasma of CxOy and/or NxOy in the reaction space; and (iii) forming an oxide film on the substrate using the precursor and the plasma.
    Type: Application
    Filed: September 19, 2013
    Publication date: March 19, 2015
    Applicant: ASM IP Holding B.V.
    Inventors: Ryu Nakano, Naoki Inoue
  • Patent number: 8980382
    Abstract: Methods of forming silicon oxide layers are described. The methods include the steps of concurrently combining both a radical precursor and a radical-oxygen precursor with a carbon-free silicon-containing precursor. One of the radical precursor and the silicon-containing precursor contain nitrogen. The methods result in depositing a silicon-oxygen-and-nitrogen-containing layer on a substrate. The oxygen content of the silicon-oxygen-and-nitrogen-containing layer is then increased to form a silicon oxide layer which may contain very little nitrogen. The radical-oxygen precursor and the radical precursor may be produced in separate plasmas or the same plasma. The increase in oxygen content may be brought about by annealing the layer in the presence of an oxygen-containing atmosphere and the density of the film may be increased further by raising the temperature even higher in an inert environment.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: March 17, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Nitin Ingle, Abhijit Basu Mallick, Earl Osman Solis, Nicolay Kovarsky, Olga Lyubimova
  • Patent number: 8974872
    Abstract: A process for producing a multilayer film which, even when bent, is less apt to decrease in barrier property or electrical conductivity. The process comprises forming a barrier film and a transparent conductive film on a resin film to produce a multilayer film. The barrier film is formed by a plasma enhanced CVD method which uses electric discharge between rolls. The transparent conductive film is preferably formed by physical vapor deposition. The resin film preferably is a polyester resin film or a polyolefin resin film.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: March 10, 2015
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Akira Hasegawa, Toshiya Kuroda, Takashi Sanada
  • Publication number: 20150050478
    Abstract: A gas barrier film including a substrate of which the surface is formed of an organic material; an inorganic film which is formed on the substrate and contains silicon nitride; and a mixed layer which is formed in an interface between the substrate and the inorganic film, and contains components derived from the organic material and the inorganic film, wherein a compositional ratio N/Si between nitrogen and silicon contained in the inorganic film is 1.00 to 1.35, the inorganic film has a film density of 2.1 g/cm3 to 2.4 g/cm3 and a film thickness of 10 nm to 60 nm, and the mixed layer has a thickness of 5 nm to 40 nm.
    Type: Application
    Filed: September 26, 2014
    Publication date: February 19, 2015
    Applicant: FUJIFILM CORPORATION
    Inventors: Yoshihiko MOCHIZUKI, Jun FUJINAWA
  • Patent number: 8956984
    Abstract: Provided is a method of manufacturing a semiconductor device capable of forming a nitride layer having high resistance to hydrogen fluoride at low temperatures. The method includes forming a nitride film on a substrate by performing a cycle a predetermined number of times, the cycle including supplying a source gas to the substrate, supplying a plasma-excited hydrogen-containing gas to the substrate, supplying a plasma-excited or thermally excited nitriding gas to the substrate, and supplying at least one of a plasma-excited nitrogen gas and a plasma-excited rare gas to the substrate.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: February 17, 2015
    Assignee: Hitachi Kokusai Electric Inc.
    Inventor: Kazuyuki Okuda
  • Publication number: 20150029681
    Abstract: A flexible composite comprising a plastic foil, having an upper and a lower surface, and at least one dielectric barrier layer against gases and liquids which is applied directly to at least one of the surfaces by plasma-enhanced thermal vapor deposition and comprises an inorganic vapor-depositable material, is provided. The flexible composite can be used for constructing flexible circuits or displays and has a high barrier effect with regard to oxygen and/or water vapor.
    Type: Application
    Filed: July 11, 2014
    Publication date: January 29, 2015
    Applicant: EVONIK INDUSTRIES AG
    Inventors: Helmut MACK, Philipp ALBERT, Bjoern BORUP, Anil K. SAXENA
  • Patent number: 8926745
    Abstract: A method for preparing a low dielectric constant (low k) material and a film thereof is provided. The method includes the following steps. A substrate is first put into a plasma generating reaction system, and a carrier gas carrying a carbon and fluorine containing silicon dioxide precursor is then introduced into the plasma generating reaction system, so that the carbon and fluorine containing silicon dioxide precursor is formed on the substrate. After that, the carbon and fluorine containing silicon dioxide precursor is converted to a low k material film through heating; meanwhile, a stress of the low k material film is eliminated such that the film has a more compact structure. By means of these steps the carbon and fluorine containing silicon dioxide precursor is still capable of forming a low k material film of silicon dioxide containing a large amount of fluorocarbon, even under various different atmospheres.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: January 6, 2015
    Assignee: Nanmat Technology Co., Ltd.
    Inventors: Cheng-Jye Chu, Chih-Hung Chen
  • Patent number: RE47440
    Abstract: Provided are gas distribution apparatus with a delivery channel having an inlet end, an outlet end and a plurality of apertures spaced along the length. The inlet end is connectable to an inlet gas source and the outlet end is connectable with a vacuum source. Also provided are gas distribution apparatus with spiral delivery channels, intertwined spiral delivery channels, splitting delivery channels, merging delivery channels and shaped delivery channels in which an inlet end and outlet end are configured for rapid exchange of gas within the delivery channels.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: June 18, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Joseph Yudovsky, Mei Chang, Faruk Gungor, Paul F. Ma, David Chu, Chien-Teh Kao, Hyman Lam, Dien-Yeh Wu
  • Patent number: RE48994
    Abstract: Provided are gas distribution apparatus with a delivery channel having an inlet end, an outlet end and a plurality of apertures spaced along the length. The inlet end is connectable to an inlet gas source and the outlet end is connectable with a vacuum source. Also provided are gas distribution apparatus with spiral delivery channels, intertwined spiral delivery channels, splitting delivery channels, merging delivery channels and shaped delivery channels in which an inlet end and outlet end are configured for rapid exchange of gas within the delivery channels.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: March 29, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Joseph Yudovsky, Mei Chang, Faruk Gungor, Paul F. Ma, David Chu, Chien-Teh Kao, Hyman W. H. Lam, Dien-Yeh Wu