Resistor Patents (Class 438/382)
  • Publication number: 20140319443
    Abstract: Provided are methods of forming nonvolatile memory elements using atomic layer deposition techniques, in which at least two different layers of a memory element are deposited sequentially and without breaking vacuum in a deposition chamber. This approach may be used to prevent oxidation of various materials used for electrodes without a need for separate oxygen barrier layers. A combination of signal lines and resistive switching layers may be used to cap the electrodes and to minimize their oxidation. As such, fewer layers are needed in a memory element. Furthermore, atomic layer deposition allows more precise control of electrode thicknesses. In some embodiments, a thickness of an electrode may be less than 50 Angstroms. Overall, atomic layer deposition of electrodes and resistive switching layers lead to smaller thicknesses of entire memory elements making them more suitable for low aspect ratio features of advanced nodes.
    Type: Application
    Filed: July 10, 2014
    Publication date: October 30, 2014
    Inventors: Yun Wang, Tony P. Chiang, Tim Minvielle, Takeshi Yamaguchi
  • Publication number: 20140322888
    Abstract: According to an example embodiment, a variable resistance memory device includes a lower electrode that includes a spacer-shaped first sub lower electrode and a second sub lower electrode covering a curved sidewall of the first sub lower electrode. The second sub lower electrode extends upward to protrude above the top of the first sub lower electrode. The lower electrode includes an upward-tapered shape.
    Type: Application
    Filed: July 10, 2014
    Publication date: October 30, 2014
    Inventors: Sanghyun HONG, Jaekyu LEE, Yong Kwan KIM
  • Publication number: 20140322886
    Abstract: A resistive memory device and a fabrication method thereof are provided. The resistive memory device includes a variable resistive layer formed on a semiconductor substrate in which a bottom structure is formed, a lower electrode formed on the variable resistive layer, a switching unit formed on the lower electrode, and an upper electrode formed on the switching unit.
    Type: Application
    Filed: July 3, 2014
    Publication date: October 30, 2014
    Inventors: Min Yong LEE, Young Ho LEE, Seung Beom BAEK, Jong Chul LEE
  • Publication number: 20140322885
    Abstract: A method for forming a resistive random access memory (RRAM) device is disclosed. The method comprises forming a first electrode, forming a resistive switching oxide layer comprising a metal oxide by thermal atomic layer deposition (ALD) and forming a second electrode by thermal atomic layer deposition (ALD), where the resistive switching layer is interposed between the first electrode and the second electrode. Forming the resistive switching oxide may be performed without exposing a surface of the switching oxide layer to a surface-modifying plasma treatment after depositing the metal oxide.
    Type: Application
    Filed: April 29, 2013
    Publication date: October 30, 2014
    Applicant: ASM IP Holding B.V.
    Inventors: Qi Xie, Vladimir Machkaoutsan, Jan Willem Maes, Michael Givens, Petri Raisanen
  • Publication number: 20140319620
    Abstract: Integrated circuits and methods for fabricating integrated circuits are provided. In an embodiment, an integrated circuit includes a first transistor structure that includes an etch-stop material layer, a first workfunction material layer disposed over the etch-stop material layer, a second workfunction material layer disposed over the first workfunction material layer, and a metal fill material disposed over the second workfunction material layer. The integrated circuit further includes a second transistor structure that includes a layer of the etch-stop material, a layer of the second workfunction material disposed over the etch-stop material layer, and a layer of the metal fill material disposed over the second workfunction material layer. Still further, the integrated circuit includes a resistor structure that includes a layer of the etch-stop material, a layer of the metal fill material disposed over the etch-stop material layer, and a silicon material layer disposed over the metal fill material layer.
    Type: Application
    Filed: April 30, 2013
    Publication date: October 30, 2014
    Applicant: GLOBALFOUNDRIES, Inc.
    Inventors: Jan Hoentschel, Stefan Flachowsky, Nicolas Sassiat, Ralf Richter
  • Patent number: 8872148
    Abstract: A phase-change memory device includes a diode, a plug, a doping layer pattern, a phase-change layer pattern and an upper electrode. The diode is disposed on a substrate. The plug is disposed on the diode and has a bottom surface whose area is equal to the area of a top surface of the diode. The plug is formed of metal or a conductive metallic compound. The doping layer pattern is disposed on the plug and has a bottom surface whose area is equal to the area of a top surface of the plug, and includes the same metal or conductive metallic compound as the plug. The phase-change layer pattern is disposed on the doping layer pattern. The upper electrode is disposed on the phase-change layer pattern.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: October 28, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Doo-Hwan Park, Gyu-Hwan Oh, Jeong-Min Park, Kyung-Min Chung
  • Patent number: 8871603
    Abstract: The invention relates to a semiconductor device and a method of manufacturing an electronic device. A first conductive layer (first metal interconnect layer) is deposited. There is an insulating layer (first intermetal dielectric) layer deposited. A resistive layer is deposited on top of the insulating layer and structured in order to serve as a thin film resistor. A second insulating layer (second intermetal dielectric) is then deposited on top of the resistive layer. A first opening is etched into the insulating layers (first and second intermetal dielectric) down to the first conductive layer. A second opening is etched into the insulating layers (first and second intermetal dielectrics) down to the first conductive layer. A cross-sectional plane of the second opening is arranged such that it at least partially overlaps the resistive layer of the thin film resistor in a first direction.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: October 28, 2014
    Assignees: Texas Instruments Deutschland GmbH, Texas Instruments Incorporated
    Inventors: Christoph Andreas Othmar Dirnecker, Leif Christian Olsen
  • Patent number: 8871561
    Abstract: Provided is a method for manufacturing a variable resistance nonvolatile storage device, which prevents electrical conduction between lower electrodes and upper electrodes of variable resistance elements in the memory cell holes. The method includes: forming lower copper lines; forming a third interlayer insulating layer; forming memory cell holes in the third interlayer insulating layer, an opening diameter of upper portions of the memory cell holes being smaller than bottom portions; forming a metal electrode layer on the bottom of each memory cell holes by sputtering; embedding and forming a variable resistance layer in each memory cell hole; and forming upper copper lines connected to the variable resistance layer embedded and formed in each memory cell hole.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: October 28, 2014
    Assignee: Panasonic Corporation
    Inventors: Ichirou Takahashi, Takumi Mikawa
  • Patent number: 8871602
    Abstract: According to one embodiment, a method for manufacturing a molecular memory device includes: forming a first wiring layer including a plurality of first wirings extending in a first direction; forming a sacrificial film on the first wiring layer; forming a plurality of core members on the first wiring layer, the core member extending in a second direction crossing the first direction and being formed from an insulating material different from the sacrificial film; forming a second wiring on a side surface of the core member; removing a portion of the sacrificial film located immediately below the second wiring; embedding a polymer; and embedding an insulating. The embedding a polymer includes embedding a polymer serving as a memory material between the first wiring and the second wiring. The embedding an insulating member includes embedding an insulating member in a space between the second wirings between the core members.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: October 28, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroki Yamashita
  • Publication number: 20140312292
    Abstract: Memristors and their fabrication are provided. A first dielectric layer is formed over one or more conductive pathways. Vias are formed in the dielectric layer and filled with conductive material. A second dielectric layer is formed there over, and vias are formed aligned with and extending to the filled vias. A reactant fluid is introduced into the vias such that a reacted portion of the conductive material is defined within the filled vias. The vias in the second dielectric layer are then filled with conductive material such that memristors are defined. Conductive pathways are then formed over and in contact with the memristors such that each is individually addressable.
    Type: Application
    Filed: December 12, 2011
    Publication date: October 23, 2014
    Inventors: Matthew Pickett, Janice Nickel
  • Publication number: 20140315369
    Abstract: Provided are semiconductor devices, such as resistive random access memory (ReRAM) cells, that include current limiting layers formed from alloys of transition metals. Some examples of such alloys include chromium containing alloys that may also include nickel, aluminum, and/or silicon. Other examples include tantalum and/or titanium containing alloys that may also include a combination of silicon and carbon or a combination of aluminum and nitrogen. These current limiting layers may have resistivities of at least about 1 Ohm-cm. This resistivity level is maintained even when the layers are subjected to strong electrical fields and/or high temperature processing. In some embodiments, the breakdown voltage of a current limiting layer is at least about 8V. The high resistivity of the layers allows scaling down the size of the semiconductor devices including these layers while maintaining their performance.
    Type: Application
    Filed: June 27, 2014
    Publication date: October 23, 2014
    Inventors: Yun Wang, Tony P. Chiang, Imran Hashim, Tim Minvielle, Dipankar Pramanik, Takeshi Yamaguchi
  • Publication number: 20140312293
    Abstract: In a method of manufacturing a variable resistance non-volatile memory device including non-volatile memory element layers stacked together by repeating the step (S100, S200 . . .
    Type: Application
    Filed: November 15, 2012
    Publication date: October 23, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Takumi Mikawa, Shinichi Yoneda
  • Publication number: 20140313816
    Abstract: The present disclosure provides a memory cell that includes a resistive memory element disposed between a first conductor and a second conductor, the first conductor and the second conductor configured to activate the resistive memory element. The memory cell also includes a backward diode disposed in series with the memory element between the memory element and either the first conductor or the second conductor.
    Type: Application
    Filed: October 12, 2011
    Publication date: October 23, 2014
    Inventors: Gilberto M. Ribeiro, Janice H. Nickel
  • Patent number: 8865558
    Abstract: A method of forming a phase change material layer pattern includes forming a phase change material layer partially filling an opening through an insulating interlayer. A plasma treatment process is performed on the phase change material layer to remove an oxide layer on a surface of the phase change material layer. A heat treatment process is performed on the phase change material layer to remove a void or a seam in the phase change material layer, sufficiently filling the opening.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: October 21, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-Hee Park, Soon-Oh Park, Jung-Hwan Park, Jin-Ho Oh
  • Patent number: 8866117
    Abstract: A diode layer includes a first impurity semiconductor layer that includes a first impurity acting as an acceptor and a second impurity semiconductor layer that includes a second impurity acting as a donor. One end of a first electrode layer contacts the diode layer. One end of a polysilicon layer contacts the other end of the first electrode layer. One end of a variable resistance layer contacts the other end of the polysilicon layer and is able to change a resistance value. A second electrode layer contacts the other end of the variable resistance layer. At least one of a first area and a second area contains a third impurity. The first area includes one end of the polysilicon layer, the second area includes the other end of the polysilicon layer. The third impurity differs from the first impurity and the second impurity.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: October 21, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsuyuki Sekine, Yasuhiro Nojiri, Hiroyuki Fukumizu
  • Publication number: 20140306172
    Abstract: An integrated circuit system, and a method of manufacture thereof, including: an integrated circuit die having an address switch; a bottom electrode contact, free of halogen constituents, characteristic of a chemical vapor deposition or an atomic layer deposition, and coupled to the address switch; a transition material layer directly on the bottom electrode contact; and a top electrode contact, directly on the transition material layer, for forming a non-volatile memory array on the integrated circuit die.
    Type: Application
    Filed: April 12, 2013
    Publication date: October 16, 2014
    Applicant: Sony Corporation
    Inventors: Scott Sills, Muralikrishnan Balakrishnan, Beth Cook, Durai Vishak Nirmal Ramaswamy, Shuichiro Yasuda
  • Publication number: 20140308797
    Abstract: A method of forming a variable resistive memory device includes forming a conductive pattern that alternates with a first insulation pattern along a first direction on a substrate that is parallel with a surface of the substrate, forming a preliminary sacrificial pattern on the conductive pattern that contacts a sidewall of the first insulation pattern, etching the conductive pattern using the preliminary sacrificial pattern as an etch masks to form a preliminary bottom electrode pattern, patterning the preliminary sacrificial pattern and the preliminary bottom electrode pattern to form a sacrificial pattern and a bottom electrode pattern that each include at least two portions which are separated from each other along a second direction intersecting the first direction, and replacing the sacrificial pattern with a variable resistive pattern.
    Type: Application
    Filed: June 26, 2014
    Publication date: October 16, 2014
    Inventor: Myung Jin KANG
  • Publication number: 20140308796
    Abstract: A method for fabricating a semiconductor device includes: forming first lines having a hydrophobic surface extending parallel to each other in a direction between first insulation layers having a hydrophilic surface; self-aligning hydrophilic particles over the first insulation layers to expose portions of the first lines at predetermined intervals; forming a plurality of variable resistance elements over the exposed portions of the first lines; and removing the particles.
    Type: Application
    Filed: August 21, 2013
    Publication date: October 16, 2014
    Applicant: SK HYNIX INC.
    Inventor: Tae-Jung HA
  • Publication number: 20140306174
    Abstract: According to one embodiment, a memory device includes a first conductive line extending in a first direction, second conductive lines each extending in a second direction intersect with the first direction, a third conductive line extending in a third direction intersect with the first and second directions, an insulating layer disposed between the second conductive lines and the third conductive line, resistance change elements each disposed on one of first and second surfaces of each of the second conductive lines in the third direction, and each connected to the third conductive line, a semiconductor layer connected between the first conductive line and one end of the third conductive line, and a select FET having a select gate electrode, and using the semiconductor layer as a channel.
    Type: Application
    Filed: September 4, 2013
    Publication date: October 16, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Kenichi MUROOKA
  • Publication number: 20140306173
    Abstract: A resistive memory having a leakage inhibiting characteristic and a method for fabricating the same, which can suppress a sneak current in a large scaled crossing array of a RRAM. A memory cell forming the resistive memory comprises a lower electrode, a first semiconductor-type oxide layer, a resistive material layer, a second semiconductor-type oxide layer and an upper electrode which are sequentially stacked. Each of the semiconductor-type oxide layers may be a semiconductor-type metal oxide or a semiconductor-type non-metal oxide. The sneak current may be effectively reduced by means of a Schottky barrier formed between the semiconductor-type oxide layer and the metal electrode, the fabrication process is easy to be implemented, and a high device integration degree can be achieved.
    Type: Application
    Filed: April 26, 2013
    Publication date: October 16, 2014
    Inventors: Ru Huang, Yinglong Huang, Yimao Cai, Yangyuan Wang, Muxi Yu
  • Patent number: 8860003
    Abstract: A resistive memory device capable of implementing a multi-level cell (MLC) and a fabrication method thereof are provided. The resistive memory device includes a lower electrode connected to a switching device and including a first node and a second node formed on a top thereof to be spaced at a fixed interval, a phase-change material pattern formed on the first node and the second node, an upper electrode formed on the phase-change material pattern, a conductive material layer formed on a top and outer sidewall of the upper electrode, a first contact plug formed on one edge of the upper electrode to be connected to the upper electrode and the conductive material layer, and a second contact plug formed on the other edge of the upper electrode to be connected to the upper electrode and the conductive material layer.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: October 14, 2014
    Assignee: SK hynix Inc.
    Inventor: Jae Min Oh
  • Publication number: 20140299832
    Abstract: A memory element programmable between different impedance states can include a first electrode layer comprising a semimetal or semiconductor (semimetal/semiconductor); a second electrode; and a switch layer formed between the first and second electrodes and comprising an insulating material; wherein atoms of the semimetal/semiconductor provide a reversible change in conductivity of the insulating material by application of electric fields.
    Type: Application
    Filed: March 17, 2014
    Publication date: October 9, 2014
    Applicant: ADESTO TECHNOLOGIES CORPORATION
    Inventor: John Ross Jameson
  • Publication number: 20140302659
    Abstract: Methods for producing RRAM resistive switching elements having reduced forming voltage include preventing formation of interfacial layers, and creating electronic defects in a dielectric film. Suppressing interfacial layers in an electrode reduces forming voltage. Electronic defects in a dielectric film foster formation of conductive pathways.
    Type: Application
    Filed: June 23, 2014
    Publication date: October 9, 2014
    Inventors: Prashant B. Phatak, Ronald J. Kuse, Jinhong Tong
  • Publication number: 20140299833
    Abstract: Disclosed is a method for manufacturing a chalcogenide switching device includes forming a first electrode on a SOI substrate, forming a chalcogenide material composed of Gex and Se1-x formed on the first electrode, and forming a second electrode on the chalcogenide material, wherein the value x is greater than 0 and smaller than 1. A chalcogenide switching device manufactured by this method is also disclosed.
    Type: Application
    Filed: April 1, 2014
    Publication date: October 9, 2014
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Byung-ki CHEONG, Sudong KIM, Suyoun LEE, Sang-Yeol SHIN, Hyung-Woo AHN
  • Patent number: 8853045
    Abstract: A precision low capacitance resistor is formed, e.g., in a bulk substrate. An embodiment includes forming a source/drain region on a substrate, patterning a portion of the source/drain region to form segments, etching the segments to substantially separate an upper section of each segment from a lower section of each segment, and filling the space between the segments with an insulating material. The resulting structure maintains electrical connection between the segments at end pads, but separates the resistor segments from the bottom substrate, thereby avoiding capacitive coupling with the substrate.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: October 7, 2014
    Assignee: GlobalFoundries, Inc.
    Inventor: Steven R. Soss
  • Patent number: 8853819
    Abstract: The present invention relates to a semiconductor structure having an integrated passive network and a method for making the same. The semiconductor structure includes a substrate which can be an interposer. The substrate can include a plurality of conductive vias. In various embodiments, the substrate includes a dielectric layer disposed thereon, the dielectric layer having an opening forming a straight hole allowing electrical connection between the passive network and the conductive via. The passive network includes a series of patterned dielectric and conductive layers, forming passive electronic components. In an embodiment, the passive device includes a common resistor coupled to a pair of inductors, each of the inductors coupled to a capacitor. In another embodiment, the passive device includes a resistor and an inductor electrically connected to each other, a bottom surface of the inductor coplanar with a bottom surface of the resistor.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: October 7, 2014
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Chien-Hua Chen, Teck-Chong Lee, Hsu-Chiang Shih, Meng-Wei Hsieh
  • Patent number: 8853046
    Abstract: A single TiON film is used to form a ReRAM device by varying the oxygen and nitrogen content throughout the device to form the electrodes and switching layer. A ReRAM device that can be formed in a single deposition chamber is also disclosed. The ReRAM device can be formed by forming a first titanium nitride layer, forming a titanium oxynitride-titanium oxide-titanium oxynitride layer, and then forming a second titanium nitride.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: October 7, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Nan Lu, Chien-Lan Hsueh
  • Patent number: 8852686
    Abstract: In one aspect, a method of forming a phase change material layer is provided. The method includes supplying a reaction gas including the composition of Formula 1 into a reaction chamber, supplying a first source which includes Ge(II) into the reaction chamber, and supplying a second source into the reaction chamber. Formula 1 is NR1R2R3, where R1, R2 and R3 are each independently at least one selected from the group consisting of H, CH3, C2H5, C3H7, C4H9, Si(CH3)3, NH2, NH(CH3), N(CH3)2, NH(C2H5) and N(C2H5)2.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: October 7, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byoung-jae Bae, Sung-lae Cho, Jin-il Lee, Hye-young Park, Do-hyung Kim
  • Patent number: 8853713
    Abstract: Resistive memory having confined filament formation is described herein. One or more method embodiments include forming an opening in a stack having a silicon material and an oxide material on the silicon material, and forming an oxide material in the opening adjacent the silicon material, wherein the oxide material formed in the opening confines filament formation in the resistive memory cell to an area enclosed by the oxide material formed in the opening.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: October 7, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Eugene P. Marsh, Jun Liu
  • Publication number: 20140295639
    Abstract: A resistive random access memory (ReRAM) cell comprising a first conductive electrode and a dielectric storage material layer over the first conductive electrode. The dielectric storage material layer is conducive to the formation of conductive filaments during the application of a filament forming voltage to the cell. The cell includes a second conductive electrode over the dielectric storage material layer and a layer of conductive nanoclusters (911, 1211) including a plurality of nanoclusters in contact with the dielectric storage material layer and in contact with the first conductive electrode or the second conductive electrode.
    Type: Application
    Filed: June 11, 2014
    Publication date: October 2, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: FENG ZHOU, Frank K. Baker, JR., Ko-Min Chang, Cheong Min Hong
  • Publication number: 20140291602
    Abstract: This invention relates to memory resistors, arrays of memory resistors and a method of making memory resistors. In particular, this invention relates to memory resistors having an on state and an off state, comprising: (a) a first electrode; (b) a second electrode; (c) a dielectric layer disposed between the first and second electrodes; wherein the dielectric layer comprises nanoparticles of semiconductor material, and wherein in the on state nanoparticles form at least one conductive filament encapsulated by the dielectric layer, thereby providing a conductive pathway between the first electrode and the second electrode.
    Type: Application
    Filed: July 5, 2012
    Publication date: October 2, 2014
    Applicant: UCL Business PLC
    Inventors: Anthony Joseph Kenyon, Adnan Mehonic
  • Publication number: 20140291597
    Abstract: The present invention provides a high-speed, high-density, and low-power consumption phase-change memory unit, and a preparation method thereof In the preparation method of the present invention, a transition material layer with an accommodation space is first prepared on a surface of a structure of a formed first electrode, where the accommodation space corresponds to the first electrode; a phase-change material layer is then prepared on a structure of the formed transition material layer, and the phase-change material layer is enabled to be in the accommodation space; and afterwards, a second electrode material layer is prepared on a surface of a structure of the prepared phase-change material layer, so as to prepare a phase-change memory unit; where phase-change material layer and the first electrode are isolated from each other by the transition material layer, and the second electrode material layer is in electrical communication with the phase-change material layer.
    Type: Application
    Filed: December 27, 2012
    Publication date: October 2, 2014
    Applicant: SHANGHAI INSTITUTE OF MICROSYSTEM AND INFORMATION TECHNOLOGY, CHINESE ACADEMY
    Inventors: Zhitang Song, Yifeng Gu, San Nian Song
  • Publication number: 20140293687
    Abstract: A semiconductor device may include a substrate, and an array of PCM memory cells above the substrate. Each PCM memory cell may include first and second vertically aligned electrodes, a first dielectric layer between the first and second electrodes, a carbon nanotube extending vertically through the first dielectric layer from the second electrode and toward the first electrode, and a PCM body between the first electrode and the at least one carbon nanotube.
    Type: Application
    Filed: March 28, 2013
    Publication date: October 2, 2014
    Applicant: STMICROELECTRONICS, INC.
    Inventor: John H. ZHANG
  • Publication number: 20140291601
    Abstract: A semiconductor device includes first lines extending in a first direction; second lines extending in a second direction crossing with the first direction; and first resistance variable elements defined between the first lines and the second lines and each including a first substance layer and a second substance layer, wherein the first substance layer extends in the first direction and the second substance layer extends in the second direction.
    Type: Application
    Filed: July 19, 2013
    Publication date: October 2, 2014
    Inventors: Hye-Jung CHOI, Su-Ock CHUNG
  • Publication number: 20140293676
    Abstract: A memory element programmable between different impedance states can include a first electrode; a switching layer formed in contact with the first electrode and including at least one metal oxide; and a buffer layer in contact with the switching layer. A buffer layer can include a first metal, tellurium, a third element, and a second metal distributed within the buffer layer. A second electrode can be in contact with the buffer layer.
    Type: Application
    Filed: March 3, 2014
    Publication date: October 2, 2014
    Inventors: Wei Ti Lee, Janet Wang, Chakravarthy Gopalan, Jeffrey Allan Shields, Yi Ma, Kuei Chang Tsai, John Sanchez, John Ross Jameson, Michael Van Buskirk, Venkatesh P. Gopinath
  • Publication number: 20140291603
    Abstract: Provided is a phase change memory, including: at least one wiring layer each including a first conductive layer and a phase change layer horizontally disposed on the first conductive layer; a heater layer disposed to vertically contact with the at least one wiring layer; and a second conductive layer disposed to contact with the heater layer in parallel therewith, and through which current flows from at least one electrode into the at least one wiring layer. The phase change layer may be made of a phase change material and may have a thickness less than a thickness of the first conductive layer.
    Type: Application
    Filed: March 28, 2014
    Publication date: October 2, 2014
    Applicant: INTELLECTUAL DISCOVERY CO., LTD.
    Inventor: Yun Heub SONG
  • Publication number: 20140295638
    Abstract: Three dimensional memory array architectures and methods of forming the same are provided. An example memory array can include a stack comprising a plurality of first conductive lines at a number of levels separated from one another by at least an insulation material, and at least one conductive extension arranged to extend substantially perpendicular to the plurality of first conductive lines. Storage element material is formed around the at least one conductive extension. Cell select material is formed around the at least one conductive extension. The at least one conductive extension, storage element material, and cell select material are located between co-planar pairs of the plurality of first conductive lines.
    Type: Application
    Filed: May 2, 2014
    Publication date: October 2, 2014
    Applicant: Micron Technology, Inc.
    Inventor: Federico Pio
  • Patent number: 8847192
    Abstract: In accordance with an embodiment of the present invention, a resistive switching device comprises a bottom electrode, a switching layer disposed over the bottom electrode, and a top electrode disposed over the switching layer. The top electrode comprises an alloy of a memory metal and an alloying element. The top electrode provides a source of the memory metal. The memory metal is configured to change a state of the switching layer.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: September 30, 2014
    Assignees: Adesto Technologies France SARL, Adesto Technologies Corporation
    Inventors: Wei Ti Lee, Chakravarthy Gopalan, Yi Ma, Jeffrey Shields, Philippe Blanchard, John Ross Jameson, Foroozan Sarah Koushan, Janet Wang, Mark Kellam
  • Patent number: 8846484
    Abstract: Systems and methods for preparing resistive switching memory devices such as resistive random access memory (ReRAM) devices wherein both oxide and nitride layers are deposited in a single chamber are provided. Various oxide and nitride based layers in the ReRAM device such as the switching layer, current-limiting layer, and the top electrode (and optionally the bottom electrode) are deposited in the single chamber. By fabricating the ReRAM device in a single chamber, throughput is increased and cost is decreased. Moreover, processing in a single chamber reduces device exposure to air and to particulates, thereby minimizing device defects.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: September 30, 2014
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Albert Sanghyup Lee, Chien-Lan Hsueh, Tim Minvielle, Takeshi Yamaguchi
  • Publication number: 20140284540
    Abstract: According to one embodiment, a semiconductor device comprises a first electrode; a second electrode containing a metal element; and a variable resistance element formed between the first electrode and the second electrode. The variable resistance element comprises an insulating first film disposed on a side of the first electrode and containing oxygen; and a second film disposed on the side of the second electrode and containing an element having a diffusion coefficient larger than the diffusion coefficient of the metal element in the first film and an electronegativity higher than the electronegativity of the metal element.
    Type: Application
    Filed: September 5, 2013
    Publication date: September 25, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Kyoichi SUGURO
  • Patent number: 8841196
    Abstract: A method of forming a non-volatile memory device includes providing a semiconductor substrate having a surface region, thereafter forming a first dielectric layer overlying, thereafter forming a first wiring material, thereafter forming amorphous silicon layer, and patterning and etching these layers to form first structures extending in a first direction and having a switching element. Thereafter, a method may include depositing a second dielectric layer overlying the first structures and having a dielectric surface region, forming an opening region in the second dielectric material to exposing part of the switching element, and depositing a silver material in the opening region, but not on the dielectric surface region.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: September 23, 2014
    Assignee: Crossbar, Inc.
    Inventor: Scott Brad Harold
  • Patent number: 8841649
    Abstract: Three dimension memory arrays and methods of forming the same are provided. An example three dimension memory array can include a stack comprising a plurality of first conductive lines separated from one another by at least an insulation material, and at least one conductive extension arranged to extend substantially perpendicular to the plurality of first conductive lines, such that the at least one conductive extension intersects a portion of at least one of the plurality of first conductive lines. Storage element material is formed around the at least one conductive extension. Cell select material is formed around the at least one conductive extension.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: September 23, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Federico Pio
  • Publication number: 20140264230
    Abstract: A phase change material (PCM) switch is disclosed that includes a resistive heater element, and a PCM element proximate the resistive heater element.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: Northrop Grumman Systems Corporation
    Inventors: PAVEL BORODULIN, Nabil Abdel-Meguid El-Hinnawy, Robert Miles Young, Robert S. Howell, John R. Mason, Brian Paul Wagner, Matthew Russell King, Evan B. Jones, Michael J. Lee, Mark Eisenzweig Sherwin
  • Publication number: 20140264237
    Abstract: A structure for a resistive memory device and a method to fabricate the same is disclosed. The method includes providing a bottom electrode comprising a metal and forming a memory layer on the bottom electrode. The memory layer includes a first layer of metal oxide, and a second layer including the nitrogen-containing metal oxide. A top electrode is formed over the memory layer.
    Type: Application
    Filed: June 28, 2013
    Publication date: September 18, 2014
    Inventors: I YUEH CHEN, WEI-CHIH CHIEN
  • Publication number: 20140264750
    Abstract: A passive circuit device incorporating a resistor and a capacitor and a method of forming the circuit device are disclosed. In an exemplary embodiment, the circuit device comprises a substrate and a passive device disposed on the substrate. The passive device includes a bottom plate disposed over the substrate, a top plate disposed over the bottom plate, a spacing dielectric disposed between the bottom plate and the top plate, a first contact and a second contact electrically coupled to the top plate, and a third contact electrically coupled to the bottom plate. The passive device is configured to provide a target capacitance and a first target resistance. The passive device may also include a second top plate disposed over the bottom plate and configured to provide a second target resistance, such that the second target resistance is different from the first target resistance.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Taiwan Semiconductor Manufacturing Company Ltd.
  • Publication number: 20140264249
    Abstract: A nonvolatile memory device includes a plurality of nonvolatile memory elements each having an upper electrode, a variable resistance layer, and a lower electrode; a first insulating layer embedding the plurality of nonvolatile memory elements, and ranging from a lowermost part of the lower electrode to a position higher than an uppermost part of the upper electrode in each of the nonvolatile memory elements; a second insulating layer being formed on the first insulating layer, and having an average size of vacancies larger than an average size of vacancies included in the first insulating layer, or having an average carbon concentration higher than an average carbon concentration of the first insulating layer; and a conductive layer penetrating the second insulating layer and a part of the first insulating layer and being connected to at least one of the upper electrodes included in the nonvolatile memory elements.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Panasonic Corporation
    Inventors: Satoru ITO, Yoshio KAWASHIMA, Yukio HAYAKAWA, Takumi MIKAWA
  • Publication number: 20140269005
    Abstract: The disclosed technology provides an electronic device and a fabrication method thereof. An electronic device according to an implementation of the disclosed technology may include: a first interlayer insulating layer formed over a substrate; first and second contact plugs passing through the first interlayer insulating layer to contact the substrate and alternately arranged to cross each other; a variable resistance element formed over the first interlayer insulating layer and coupled to the first contact plug; a second interlayer insulating layer formed over an entire structure including the first interlayer insulating layer; a third contact plug passing through the second interlayer insulating layer so as to be coupled to the variable resistance element, and a fourth contact plug passing through the second interlayer insulating layer so as to be contacted to the second contact plug; and conductive lines coupled to the third contact plug and the fourth contact plug, respectively.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 18, 2014
    Applicant: SK HYNIX INC.
    Inventor: Jung-Hyun Kang
  • Publication number: 20140273300
    Abstract: Forming a resistive memory structure at a temperature well above the operating temperature can reduce the forming voltage and create a defect distribution with higher stability and lower programming voltages. The forming temperature can be up to 200 C above the operating temperature. The memory chip can include an embedded heater in the chip package, allowing for a chip forming process after packaging.
    Type: Application
    Filed: November 5, 2013
    Publication date: September 18, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Dipankar Pramanik, Tony P. Chiang
  • Publication number: 20140268990
    Abstract: A multi-bit NVM cell includes a storage unit having resistive elements, such as phase change resistive elements. The NVM cell may be configured as a single port or dual port multi-bit cell. The NVM cell includes a cell selector. The cell selector selects the multi-bit cell. When appropriate signals are applied to the NVM cell, the cell selector selects an appropriate resistive element of the storage unit. A plurality of storage units can be commonly coupled to the cell selector, facilitating high density applications.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Yang HONG, Yong Wee Francis POH, Tze Ho Simon CHAN
  • Publication number: 20140264246
    Abstract: A resistive memory cell, e.g., CBRAM or ReRAM cell, may include a top electrode an a trench-shaped bottom electrode structure defining a bottom electrode connection and a sidewall extending from a first sidewall region adjacent the bottom electrode connection to a tip region defining a tip surface facing generally away from the bottom electrode connection, and wherein the tip surface facing away from the bottom electrode connection has a tip thickness that is less than a thickness of the first sidewall region adjacent the bottom electrode connection. An electrolyte switching region is arranged between the top electrode and the bottom electrode sidewall tip region to provide a path for the formation of a conductive filament or vacancy chain from the bottom electrode sidewall tip surface of the top electrode, via the electrolyte switching region, when a voltage bias is applied to the resistive memory cell.
    Type: Application
    Filed: February 19, 2014
    Publication date: September 18, 2014
    Inventors: James Walls, Paul Fest