Treating Polymer Containing Material Or Treating A Solid Polymer Or A Resinifiable Intermediate Condensation Product Patents (Class 528/480)
  • Patent number: 8846857
    Abstract: Provided are methods for obtaining modified polyarylene sulfide compositions having improved thermal and thermo-oxidative stability, the compositions so obtained, and articles comprising the compositions. The method comprises the steps of contacting, in the presence of a suitable solvent, a polyarylene sulfide with at least one reducing agent and at least base to form a first mixture. The reducing agent comprises zinc(0), tin(0), tin(II), bismuth (0), bismuth(III), or a combination thereof. The first mixture is heated to form a second mixture in which the polyarylene sulfide is dissolved. The polyarylene sulfide is then precipitated to obtain a modified polyarylene sulfide.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: September 30, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Robert John Duff, Zheng-Zheng Huang, Joachim C Ritter, Joel M Pollino
  • Patent number: 8816045
    Abstract: The present invention relates to a method of removing volatile organic compounds (VOCs) from a latex using a membrane.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: August 26, 2014
    Assignees: Dow Global Technologies LLC, Regents of the University of Minnesota
    Inventors: Timothy C. Frank, Edward L. Cussler
  • Patent number: 8815970
    Abstract: A method of preparing polyurethane prepolymer does not require using a toxic isocyanate monomer (manufactured by harmful phosgene) as a raw material. Epoxy resin and carbon dioxide are used as major raw materials to form cyclic carbonates to be reacted with a functional group oligomer, and then amino groups in a hydrophilic (ether group) or hydrophobic (siloxane group) diamine polymer are used for performing a ring-opening polymerization, and the microwave irradiation is used in the ring-opening polymerization to efficiently synthesize the amino-terminated PU prepolymer, and then an acrylic group at an end is added to manufacture an UV cross-linking PU (UV-PU) oligomer which can be coated onto a fabric surface, and the fabric is dried by UV radiation for a surface treatment to form a washing-resisted long lasting hydrophilic or hydrophobic PU fabric.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: August 26, 2014
    Assignee: Tamkang University (A University of Taiwan)
    Inventors: Jing-Zhong Hwang, Guei-Jia Chang, Jhong-Jheng Lin, Cheng-Wei Tsai, Shih-Chieh Wang, Po-Cheng Chen, Kan-Nan Chen, Kan-Nan Chen
  • Patent number: 8809491
    Abstract: The present invention provides a method for depolymerization of a mixture comprising oligomeric cyclic ethers resulting from copolymerization of at least one tetrahydrofuran and at least one other cyclic ether to recover tetrahydrofuran monomer.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: August 19, 2014
    Assignee: INVISTA North America S.à r.l.
    Inventors: Robert B. Osborne, Paul S. Pearlman, Yanhui Sun
  • Patent number: 8796370
    Abstract: A coating composition which is an aqueous dispersion of a fluororesin particle (A) including a fluororesin, a resin particle (B) the decomposition and vaporization of which begin at a temperature not higher than a decomposition temperature of the fluororesin, and a nonionic surfactant (C) in an aqueous medium. The aqueous dispersion contains the resin particle (B) in an amount of 5 to 25 parts by mass based on 100 parts by mass of the fluororesin particle (A) and a fluorine-containing surfactant in an amount smaller than 500 ppm relative to the fluororesin particle (A).
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: August 5, 2014
    Assignee: Daikin Industries, Ltd.
    Inventors: Hiromichi Momose, Hiroshi Torii, Seitaro Yamaguchi
  • Patent number: 8796413
    Abstract: Provided are a method for producing a polymer material having a high degree of crystallization, a small variability in degree of crystallization, and a three-dimensionally isotropic crystallinity to thus give high thermal resistance, high isotropy of resin physical properties, and a small variability in resin physical properties; and the polymer material.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: August 5, 2014
    Assignee: Sekisui Chemical Co., Ltd.
    Inventors: Hironori Tabata, Akira Nakasuga, Norihiro Asai
  • Patent number: 8791230
    Abstract: A method for reducing colored foreign substances in a water absorbent resin by a convenient and simple technique in the production of a water absorbent resin, without requiring any modification of raw materials or high capital investment, is provided. The method for producing a particulate water absorbent resin includes a step of polymerizing an aqueous solution of an unsaturated monomer; and a step of drying a particulate water-containing gel-like cross-linked polymer having a solids concentration of 30% by weight or greater that is obtainable in a gel grain refining step during polymerization or after polymerization, with one or more apparatuses for aerating a water absorbent resin with a high temperature gas stream being installed in the drying step and/or in at least one of the subsequent steps, while in the aerating apparatus, the high temperature gas stream is passed through a filter and then is reused in the same step as the step where the aerating apparatus is installed, or in a different step.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: July 29, 2014
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Satoshi Matsumoto, Syuji Kanzaki, Kazumasa Konishi
  • Patent number: 8785593
    Abstract: A novel process for producing a polyamidoamine-epihalohydrin resin composition comprises (a) reacting a polyamidoamine with epihalohydrin to obtain a reaction mixture comprising a polyamidoamine-epihalohydrin resin; (b) adding a first acid to the reaction mixture obtained in step (a) to obtain an acid treatment composition; (c) adding a base to the acid treatment composition in step (b) to obtain a base treatment composition; and (d) adding a second acid to the base treatment composition in step (c) to obtain a polyamidoamine-epihalohydrin resin composition; wherein the polyamidoamine-epihalohydrin resin composition obtained in step (d) has less than about 700 ppm of dihalopropanol (DHP) and 3-halopropanediol (HPD).
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: July 22, 2014
    Assignee: Georgia-Pacific Chemicals LLC
    Inventors: Karla D. Favors, Clay E. Ringold, Yuping Luo, Cornel Hagiopol
  • Patent number: 8779015
    Abstract: Provided are a recycling method for industrially, simply and effectively recycling a phenolic body from a phenolic antioxidant which is masked by an organoaluminum compound and contained in an olefin polymer obtained by supplying the masked phenolic antioxidant upon polymerization; and an olefin polymer obtained by this method. In a method for recycling a phenolic antioxidant wherein a phenolic antioxidant which is masked by an organoaluminum compound and contained in an olefin polymer obtained by supplying the masked phenolic antioxidant upon polymerization is recycled to a phenolic body, a nitrogen gas comprising water and/or a proton donor at a volume ratio of 1.0×10?6 to 2.5×10?2 with respect to 1 volume of nitrogen is brought into contact with the olefin polymer.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: July 15, 2014
    Assignee: Adeka Corporation
    Inventors: Naoshi Kawamoto, Tsuyoshi Urushihara, Kohei Okamoto, Tetsuya Seguchi
  • Patent number: 8771583
    Abstract: Polyester compositions described herein have properties which are particularly suitable for extrusion blow molding (EBM). These properties relate primarily to the rate of crystallization and melt strength or melt viscosity. Articles prepared from the polyester compositions exhibit good clarity, aesthetics, and other physical properties. The polyester compositions also exhibit broad molecular weight distribution (MWD), resulting in improved processability and melt strength. The crystallization rate allows for good drying characteristics while also enabling the use of regrind. In addition, the compositions exhibit improved recyclability, such as in existing PET recycling streams. In one aspect, articles are prepared in an extrusion blow molding method by combining a dry first polyester copolymer component, a dry second polyester component, and a chain extender to form a feed material suitable for extrusion blow molding.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: July 8, 2014
    Assignee: Pepsico, Inc.
    Inventor: Clarence Sequeira
  • Patent number: 8771523
    Abstract: A composition that has a low volatile organic compound (VOC) content and methods for producing compositions having a low VOC content. The composition, such as a solid ink and/or toner release oil composition, may include less than about 0.15% by weight VOCs that have a sufficient vapor pressure at the operating temperature of printing device to enter the gas phase at the operating temperature of the printing device.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: July 8, 2014
    Assignee: Xerox Corporation
    Inventors: Christopher Auguste Dirubio, William C. Dean, Jeffrey C. Shelton, Patricia A. Wang
  • Patent number: 8765880
    Abstract: Disclosed are terminal-modified difunctional sulfur-containing polymers that are the reaction products of a sulfur-containing diol, an aldehyde or a ketone, and a compound containing a functional group. Compositions comprising the terminal-modified difunctional sulfur-containing polymers useful as sealants are also disclosed.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: July 1, 2014
    Assignee: PRC DeSoto International, Inc.
    Inventors: Stephen J. Hobbs, Gregory J. McCollum, Lawrence G. Anderson, Renhe Lin
  • Patent number: 8748559
    Abstract: Polyester compositions, especially polyethylene terephthalate homopolymer and copolymers, are disclosed containing titanium catalysts and catalyst deactivator added late in the manufacturing processing having reduced acetaldehyde generation rates. The polyester compositions are low in free acetaldehyde, making them suitable for fabrication into beverage containers for relatively tasteless beverages such as bottle water. Furthermore, the polyesters are polymerized to a high inherent viscosity in reduced processing time, without the necessity of further polymerization in the solid state, and in the absence of acetaldehyde scavengers leading to polyester polymers having reduced color.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: June 10, 2014
    Assignee: Grupo Petrotemex, S.A. de C.V.
    Inventor: Mary Therese Jernigan
  • Patent number: 8748562
    Abstract: A process for producing higher molecular weight polyester includes heating a polyester to form a melt, and applying and maintaining a vacuum of between about 5 mm and about 85 mm of mercury to the melt while passing bubbles of gas through the melt until molecular weight has increased. The process may involve esterification of a diacid component and a diol component at elevated temperature. After the acid functional groups have essentially reacted, a vacuum of about 5 mm of mercury or less was applied and excess diol stripped off during transesterification, thereby increasing molecular weight.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: June 10, 2014
    Assignee: AWI Licensing Company
    Inventors: Larry W. Leininger, Dong Tian
  • Patent number: 8748534
    Abstract: A method for forming a conjugated polymer which is doped by a dopant includes the steps of (a) adding a doping agent comprising a dopant moiety to a solution containing the conjugated polymer or a precursor thereof and, optionally, a second polymer, the dopant moiety being capable of bonding to the conjugated polymer, precursor thereof or the second polymer; (b) allowing the dopant moiety to bond to the conjugated polymer, precursor thereof or the second polymer to perform doping of the conjugated polymer, wherein the amount of doping agent added in step (a) is less than the amount required to form a fully doped conjugated polymer.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: June 10, 2014
    Assignee: Cambridge Display Technology Limited
    Inventors: Peter Kian-Hoon Ho, Ji-Seon Kim, Richard Henry Friend
  • Patent number: 8741972
    Abstract: In one aspect, the invention relates to recycled polyethylene terephthalate compositions, fibers and articles produced therefrom, and methods for producing same. In a further aspect, the invention relates to homogenized post-consumer polyethylene terephthalate. In a further aspect, the invention relates to extruded polymer compositions, polymer mixtures, fibers, and/or Bulked Continuous Filament fibers comprising post-consumer polyethylene terephthalate. In a further aspect, the invention relates to processes for preparing recycled polyethylene terephthalate compositions. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: June 3, 2014
    Assignee: Columbia Insurance Company
    Inventors: Hubert J. Booth, Christopher Eric Bradley, Daniel Ray Johnson, James Henry Keen, Jr.
  • Patent number: 8742066
    Abstract: The present invention relates to processes for recycling articles made from butyl ionomers and processes for producing recycled butyl ionomers. The invention further relates to composites comprising recycled butyl ionomers and fillers and articles made from recycled butyl ionomers. The invention also relates to uncured filled articles made from butyl ionomers having certain physical properties. Exemplary fillers include silica, carbon black, talc and clay, particularly onium substituted high aspect ratio nanoclays.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: June 3, 2014
    Assignee: LANXESS International S.A.
    Inventors: Dana Adkinson, Rayner Krista, Kevin Kulbaba
  • Patent number: 8735457
    Abstract: In one aspect, the invention relates to recycled polyethylene terephthalate compositions, fibers and articles produced therefrom, and methods for producing same. In a further aspect, the invention relates to homogenized post-consumer polyethylene terephthalate. In a further aspect, the invention relates to extruded polymer compositions, polymer mixtures, fibers, and/or Bulked Continuous Filament fibers comprising post-consumer polyethylene terephthalate. In a further aspect, the invention relates to processes for preparing recycled polyethylene terephthalate compositions. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: May 27, 2014
    Assignee: Columbia Insurance Company
    Inventors: Hubert J. Booth, Christopher Eric Bradley, Daniel Ray Johnson, James Henry Keen, Jr.
  • Patent number: 8729223
    Abstract: Solid-state shear pulverization of semi-crystalline polymers and copolymers thereof and related methods for enhanced crystallization kinetics and physical/mechanical properties.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: May 20, 2014
    Assignee: Northwestern University
    Inventors: John M. Torkelson, Cynthia Pierre, Amanda Flores
  • Patent number: 8722839
    Abstract: A fiber comprises a composition including a poly(phenylene ether) having less than or equal to 240 parts per million by weight of hydroxyl groups associated with ethylene bridge groups and less than or equal to 800 parts per million by weight of hydroxyl groups associated with rearranged backbone groups, both amounts based on the weight of the poly(phenylene ether). Fiber of low denier can be formed from this composition. The fiber can be formed by melt spinning.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: May 13, 2014
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventor: Robert John Hossan
  • Patent number: 8716356
    Abstract: The present invention relates to novel polyazoles, a proton-conducting polymer membrane based on these polyazoles and its use as polymer electrolyte membrane (PEM) for producing membrane-electrode units for PEM-fuel cells, and also other shaped bodies comprising such polyazoles.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: May 6, 2014
    Assignee: BASF Fuel Cell GmbH
    Inventors: Gordon Calundann, Brian Benicewicz, Jochen Baurmeister
  • Patent number: 8703879
    Abstract: A continuous process for the multistage drying and postcondensation of polyamide pellets in the solid phase comprises 1) carrying out the predrying process in a continuous drying apparatus which is operated in countercurrent mode or in crossflow mode with inert gas or steam, or with a mixture of inert gas and steam, using a pellet temperature in the range from 70 to 200° C., and 2) Carrying out the subsequent continuous postcondensation process in a separate vertical duct with moving bed at a pellet temperature in the range from 120 to 210° C., where the duct is operated in countercurrent mode with inert gas or steam, or with a mixture of inert gas and steam, the inert gas is introduced at least two sites along the duct, and from 15 to 90% of the inert gas is introduced at the base of the vertical duct and from 10 to 85% of the inert gas is introduced in the upper half below the surface of the pellets.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: April 22, 2014
    Assignee: BASF SE
    Inventors: Wolfgang Loth, Faissal-Ali El-Toufaili, Achim Stammer, Gad Kory, Achim Gerstlauer, Jens Becker
  • Patent number: 8697772
    Abstract: Certain novel polymerizable phosphoric acid derivatives (hereinafter referred to as monomers) comprising a polyalicyclic structure element, mixtures comprising one or a plurality of these compounds and corresponding curable blends and products as well as their respective use as a dental material or for the preparation of a dental material are described. The compounds are eminently suitable as bonding agents, in particular in dental adhesive materials. A process for preparing these compounds or mixtures and a method for preparing a product, preferably a product suitable for dentistry, are also described.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: April 15, 2014
    Assignee: VOCO GmbH
    Inventors: Tobias Blömker, Manfred Stepputtis, Manfred Thomas Plaumann
  • Patent number: 8680214
    Abstract: Disclosed are terminal-modified difunctional sulfur-containing polymers that are the reaction products of a sulfur-containing diol, an aldehyde or a ketone, and a compound containing a functional group. Compositions comprising the terminal-modified difunctional sulfur-containing polymers useful as sealants are also disclosed.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: March 25, 2014
    Assignee: PRC DeSoto International, Inc.
    Inventors: Stephen J. Hobbs, Gregory J. McCollum, Lawrence G. Anderson, Renhe Lin
  • Patent number: 8680200
    Abstract: Novel polyglycerol aldehyde polymers are described. The polymers comprise glycerol monomers connected by ether linkages and have 3 to about 170 aldehyde groups per molecule. The polyglycerol aldehydes may be reacted with various amine-containing polymers to form hydrogel tissue adhesives and sealants that may be useful for medical applications such as wound closure, supplementing or replacing sutures or staples in internal surgical procedures such as intestinal anastomosis and vascular anastomosis, tissue repair, preventing leakage of fluids such as blood, bile, gastrointestinal fluid and cerebrospinal fluid, ophthalmic procedures, drug delivery, and preventing post-surgical adhesions.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: March 25, 2014
    Assignee: Actamax Surgical Materials LLC
    Inventor: Henry Keith Chenault
  • Patent number: 8669344
    Abstract: A method of removing a residual catalyst metal compound from a polymer solution comprises the steps of: a) mixing a solution in which at least one organic nitrogen compound is dissolved in a polar solvent and the polymer solution to precipitate a chelate compound of the organic nitrogen compounds and the residual catalyst metal compound, b) adding the polar solvent to the solution mixture to dissolve a chelate compound and to precipitate a polymer, and c) filtering the precipitated polymer. After the polymer polymerization is completed, an organic nitrogen compound solution is added to perform a chelate reaction with the residual catalyst metal compound in a solution phase, and the polar solvent is added to precipitate the polymer so that only polymer precipitates are filtered while an additional filtration process in respect to the chelate compound is not performed to easily remove the residual catalyst metal compound.
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: March 11, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Hye-Young Jung, Sung-Ho Chun, Sung-Don Hong, Jung-Min Lee, Heon Kim, Dmitry Kravchuk
  • Patent number: 8663792
    Abstract: A composite roofing overlay containing paint waste is provided for use on a roof surface. The composite roofing overlay includes a bedding cement containing water-based paint waste and sand, a porous fabric embedded in the bedding cement, and at least one primer coat over the porous fabric and bedding cement. The composite roofing overlay may be used in combination with an overlying waterproof roofing membrane to provide an effective waterproof seal to new or existing roof structures.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: March 4, 2014
    Assignee: Polymer Recycling, LLC
    Inventor: Michael Joseph Gerace
  • Patent number: 8664284
    Abstract: A method of depolymerizing formulated rubbers and polymer solids is described. The method utilizes a solvent at or above the solvent's critical pressure and critical temperature with a low ratio of solvent to the solid material. The resulting depolymerized material in either substantially solid or highly viscous liquid form can be repolymerized with the addition of more monomer.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: March 4, 2014
    Inventors: William A Farone, Tracy Palmer
  • Patent number: 8658760
    Abstract: Formulations based on anionically stabilized aqueous polymer dispersions, containing polychloroprene, to which carbon dioxide (CO2) has been added, to a process for their preparation, to a device for increasing the carbon dioxide content of formulations based on anionically stabilized aqueous polymer dispersions, and to the use thereof in the production of adhesives, sealants, large-volume parts or coatings.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: February 25, 2014
    Assignee: Bayer MaterialScience AG
    Inventors: Dirk Achten, Peter Kueker, Juergen Kempkes, Bianka Lorenz, Mathias Matner, Winfried Jeske, Jose Colinas-Martinez
  • Patent number: 8658758
    Abstract: In the production of an aliphatic polyester by ring-opening polymerization of a cyclic ester, at least a latter period of polymerization is proceeded with by way of solid-phase polymerization, and the resultant aliphatic polyester is subjected to removal of residual cyclic ester. As a result, an aliphatic polyester with a minimized content of residual monomer is obtained.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: February 25, 2014
    Assignee: Kureha Corporation
    Inventors: Hiroyuki Sato, Fuminori Kobayashi, Yukichika Kawakami, Kazuyuki Yamane, Yoshikazu Amano, Takashi Sato
  • Patent number: 8653150
    Abstract: The present invention relates to a method for decomposing, in the presence of subcritical water, a thermosetting resin comprising a polyester moiety and a crosslinking moiety therewith to provide a compound comprising an acid residue derived from the polyester moiety and a residue derived from the crosslinking moiety, and collecting the compound in an efficient yield, specifically, which comprises steps of: (I) decomposing the thermosetting resin in the presence of subcritical water to provide a solid comprising a compound comprising an acid residue derived from the polyester moiety and a residue derived from the crosslinking moiety, (II) subjecting the solid to an organic solvent to dissolve the compound into the organic solvent, wherein the organic solvent has a higher solubility which can dissolve the compound than that of water, and (III) collecting, separating or isolating the compound from the organic solvent.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: February 18, 2014
    Assignees: Panasonic Corporation, International Center for Environmental Technology Transfer
    Inventors: Takumi Izumitani, Takaharu Nakagawa, Masaru Hidaka, Keishi Shibata, Junko Matsui
  • Patent number: 8633123
    Abstract: The present invention provides unimolecular metal complexes having increased activity in the copolymerization of carbon dioxide and epoxides. Also provided are methods of using such metal complexes in the synthesis of polymers. According to one aspect, the present invention provides metal complexes comprising an activating species with co-catalytic activity tethered to a multidentate ligand that is coordinated to the active metal center of the complex.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: January 21, 2014
    Assignee: Novomer, Inc.
    Inventors: Scott D. Allen, Anna E. Cherian, Chris A. Simoneau, Jay J. Farmer, Geoffrey W. Coates, Alexei Gridnev, Robert E. LaPointe
  • Patent number: 8623955
    Abstract: A macromolecule including a polymer and a polyhedral radical chemically bonded to a terminus of the polymer provides numerous processing and performance advantages. Further functionalization of this macromolecule also is described as being advantageous in certain circumstances. Methods of providing, functionalizing, and utilizing the macro-molecule also are provided.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: January 7, 2014
    Assignee: Bridgestone Corporation
    Inventors: Yuan-Yong Yan, Jason Poulton, Xiaorong Wang, Hao Wang, Michelle A. Cottrell
  • Patent number: 8618245
    Abstract: The present invention relates to an obtainment process of biodegradable polymers from a citric residue resulting from the processing of orange juice. The polymers obtained are polyesters classified as polyhydroxyalkanoates including, among them the poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate). The biodegradable polymer is obtained from the batch culture process or fed batch culture process with or without recirculation of the cells, using as a carbon source the pre-treated pressing liquor and/or the citric molasses. The polyhydroxyalkanoates, herein described, can be used as substitutes of the synthetic polyesters in different areas, including the food, pharmaceutical, medical, agricultural and other areas.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: December 31, 2013
    Assignees: Citrosuco S/A Agroindustria, Universidade Federal de Santa Catarina
    Inventors: Glaucia Maria Falcão de Aragão, Willibaldo Schimidell Netto, Jaciane Lutz Ienczak, Mônica Lady Fiorese, Francieli Dalcaton, Franciny Schmidt, Ricardo Deucher, Cinthia Vecchi, Rafael Costa Rodrigues
  • Patent number: 8603577
    Abstract: A process for preparing water-absorbing polymer particles by coating water-absorbing polymer particles with a particulate solid in a mixer, wherein the particulate solid is dispersed by means of a gas stream and the supply of the dispersed particulate solid in the mixer ends below the product bed surface.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: December 10, 2013
    Assignee: BASF SE
    Inventors: Holger Barthel, Martin Wendker, Reiner Witt
  • Patent number: 8603705
    Abstract: Described herein are improved methods of forming polymer films, the polymer films formed thereby, and electronic devices formed form the polymer films. The methods generally include contacting a polymer with a solvent to at least partially solvate the polymer in the solvent, exposing the at least partially solvated polymer and solvent to ultrasonic energy for a duration effective to form a plurality of ordered assemblies of the polymer in the solvent, and forming a solid film of the polymer, wherein the solid film comprises the plurality of ordered assemblies of the polymer.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: December 10, 2013
    Assignee: Georgia Tech Research Corporation
    Inventors: Avishek Aiyar, Rakesh Nambiar, David Collard, Elsa Reichmanis
  • Patent number: 8604160
    Abstract: A composite roofing overlay containing paint waste is provided for use on a roof surface. The composite roofing overlay includes a bedding cement containing water-based paint waste and crushed recycled glass, a porous fabric embedded in the bedding cement, and at least one primer coat over the porous fabric and bedding cement. The composite roofing overlay may be used in combination with an overlying waterproof roofing membrane to provide an effective waterproof seal to new or existing roof structures.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: December 10, 2013
    Assignee: Polymer Recycling, LLC
    Inventor: Michael Joseph Gerace
  • Patent number: 8598310
    Abstract: Interlock for use in a process for degassing of a polymer powder in a degassing vessel. The interlock includes (a) measuring the temperature of the vapor phase resulting from a liquid-vapor separation, which vapor phase is used as a purge gas in a degassing vessel, (b) comparing the measured temperature to a threshold value, and (c) in the event that the measured temperature is above the threshold value then use of the vapor as purge gas is stopped or reduced.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: December 3, 2013
    Assignee: Ineos Commercial Services UK Limited
    Inventors: Jean-Louis Chamayou, Stephen Kevin Lee
  • Patent number: 8597582
    Abstract: The present embodiments provide a system and method for separation within a polymer production process. Specifically, a flashline heater configured according to present embodiments may provide more time than is required for complete vaporization of liquid hydrocarbons that are not entrained within a polymer fluff produced within a polymerization reactor. Such extra time may allow for liquid hydrocarbons that are entrained within the polymer fluff to be vaporized.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: December 3, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: John D. Hottovy, Scott E. Kufeld
  • Patent number: 8586643
    Abstract: A composition used for preparing foaming material comprising a polyhydroxyalkanoate, a polylactic acid and a foaming agent, which posses certain tensile strength, elongation in break and expansion ratio as well as full bio-degradability, thus can be used in packaging industry.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: November 19, 2013
    Inventors: Weichuan Lu, Mei Li
  • Patent number: 8580917
    Abstract: The invention relates to block polymers, for example, arborescent copolymer compounds, and to methods of making and purifying such compounds. In one embodiment, the invention relates to arborescent polymer compounds that contain one or more styrene polymeric blocks in combination with one or more isobutylene polymeric blocks. In another embodiment, the invention relates to methods for purifying arborescent polymer compounds that contain at least one styrene polymeric block in combination with at least one isobutylene polymeric block.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: November 12, 2013
    Assignee: The University of Akron
    Inventor: Judit E Puskas
  • Patent number: 8580914
    Abstract: A process for producing an aliphatic polyester through ring-opening polymerization of a cyclic ester, wherein a partial polymer in a molten state is continuously introduced into a twin-screw stirring device to continuously obtain a partial polymer in a solid pulverized state, the partial polymer is subjected to solid-phase polymerization, and the resultant polymer is melt-kneaded together with a thermal stabilizer to be formed into pellets. As a result, an aliphatic polyester of a high molecular weight and with little discoloration is produced efficiently.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: November 12, 2013
    Assignee: Kureha Corporation
    Inventors: Hiroyuki Sato, Yoshinori Suzuki, Tomohiro Hoshi, Fumio Maeda
  • Patent number: 8568705
    Abstract: A method of preparing a multiarm polymer includes reacting a branched polyol with one or more functionalizing reagents to effect substitution of an ionizable functional group or a protected ionizable functional group, Y, to form a mixture comprising (i) unsubstituted branched polyol containing no Y groups; (ii) a monosubstituted polyol comprising one Y group, and (iii) a multisubstituted polyol (e.g., a disubstituted polyol comprising two Y groups); followed by purifying the mixture to separate the monosubstituted polyol from other species Thereafter, a water-soluble and non-peptidic polymer segment is attached to the monosubstituted branched polyol at the site of at least one of the hydroxyl groups. The invention also provides purified monosubstituted branched polyols and multiarm polymers prepared by the method and polyol precursors for use in the method.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: October 29, 2013
    Assignee: Nektar Therapeutics
    Inventors: Samuel P. McManus, Antoni Kozlowski
  • Patent number: 8569441
    Abstract: The present invention is directed to a process for the cleavage of one or more starting polymers having thiocarbonylthio groups of the formula (I) into derived polymers in which the —S—(C?S)— group is transformed. The process includes contacting the starting polymer containing groups Yb with one or more reagents containing groups Xa to produce the derived polymer and a byproduct containing the groups Yb, wherein the groups Xa is one or more reactive groups and the groups Yb is an extracting group and a byproduct, which is then separated from the derived polymer by conventional separation processes. The derived polymer is free from odor or color that is sometimes associated with the starting polymer and it can be used in making optical lenses, such as high refractive index spectacle lenses.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: October 29, 2013
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Graeme Moad, San Hoa Thang, Ezio Rizzardo
  • Patent number: 8563681
    Abstract: This invention provides a process for producing fine PPS resin particles and dispersion thereof by industrially applicable simple operation. This invention further provides very fine PPS resin particles, and furthermore provides fine PPS resin particles uniform in particle size. This invention is a process for producing fine polyphenylene sulfide resin particles comprising the following steps (a) and (b); (a) a step of heating a polyphenylene sulfide resin in an organic solvent, for obtaining a solution with the polyphenylene sulfide resin dissolved therein (dissolution step) (b) a step of flushing-cooling the aforementioned solution, for precipitating the fine particles of the polyphenylene sulfide resin (precipitation step).
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: October 22, 2013
    Assignee: Toray Industries, Inc.
    Inventors: Kei Makita, Takae Ono, Toshiya Takahashi, Hiroaki Akasaka, Tomohiro Sakane
  • Patent number: 8557882
    Abstract: A method for preparing contaminated plastics ground into flakes, such as RPET or such polymers, having at least decontamination and SSP treatment steps, with at least one reactor, with heating to the process temperature taking place essentially outside the reactor. Also, a device for carrying out the method, and having at least one decontamination reactor and at least one SSP reactor, a device for heating plastic flakes to the process temperature being arranged upstream of the decontamination reactor. Also an SSP reactor having at least two individual reactors, and preferably between 3 and 7 individual reactors.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: October 15, 2013
    Assignee: Krones AG
    Inventors: Thomas Friedlaender, Thomas Rieckmann, Frank Marx
  • Patent number: 8546522
    Abstract: Provided are a method for preparing fine round powdery polycarbonate and a method for preparing a high molecular weight polycarbonate resin using the same. More specifically, provided are a method for preparing fine round powdery polycarbonate, comprising (A) polymerizing non-phosgene polycarbonate, (B) extruding the polycarbonate into fine round powdery amorphous polycarbonate, (C) surface-crystallizing the fine round powdery amorphous polycarbonate in the presence of a solvent or dispersion medium, and (D) drying the surface-crystallized fine round powdery polycarbonate, and a method for preparing high molecular weight polycarbonate resin capable of obtaining polycarbonates with various molecular weights ranging from low molecular weights to high molecular weights by continuously using the obtained fine round powdery polycarbonate via a solid state polymerization step.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: October 1, 2013
    Assignee: Lotte Chemical Corporation
    Inventors: Se Hoon Kim, Sang Hyun Park, Young Koan Ko
  • Patent number: 8546455
    Abstract: The invention relates to a method of solubilizing expanded polystyrene (EPS), in which the EPS is brought into contact with at least one initial solvent, enabling the transition of the EPS from an expanded solid state to the gel state. The aforementioned gel is subsequently treated with at least one complementary solvent that is different from the initial solvent, enabling the solubilization thereof such as to produce a true solution. The invention also relates to the product thus obtained and to the use of said product.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: October 1, 2013
    Assignee: Eska
    Inventors: Franck Poutch, Pierre Dalet, José Alcorta
  • Patent number: 8541477
    Abstract: A method comprises forming a reaction mixture comprising a terephthalate polyester, a glycol comprising 2 to 5 carbons, and an amidine organocatalyst; and heating the reaction mixture at a temperature of about 120° C. or more to depolymerize the terephthalate polyester, thereby forming a terephthalate reaction product comprising a monomeric dihydroxy terephthalate diester; wherein the terephthalate reaction product contains terephthalate oligomers in an amount less than the amount of terephthalate oligomers that would result from i) substituting the amidine organocatalyst with an equimolar amount of a guanidine catalyst and ii) depolymerizing the terephthalate polyester under otherwise identical reaction conditions.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: September 24, 2013
    Assignees: International Business Machines Corporation, King Abdulaziz City for Science and Technology
    Inventors: Abdullah M Alabdulrahman, Hamid A Almegren, Fares D Alsewailem, Phillip Joe Brock, Daniel Joseph Coady, Kazuki Fukushima, James Lupton Hedrick, Hans Werner Horn, Julia Elizabeth Rice
  • Patent number: 8541540
    Abstract: A continuous process is disclosed for the extraction of monomeric caprolactam and its oligomers as the raw polymer product obtained in the polymerization of polyamide-6 in which no fresh water, but processing water or previously used extraction water is used for the granulation.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: September 24, 2013
    Assignee: Lurgi Zimmer GmbH
    Inventors: Klaus Kirsten, Manfred Albrecht, Franz Samlitschka