Light, Thermal, And Electrical Application Patents (Class 607/1)
  • Patent number: 8954162
    Abstract: The disclosure is directed to a method for implanting a medical device proximate to a target tissue site within an occipital region of a patient, such as proximate to an occipital nerve or a trigeminal nerve. The method comprises introducing an implant tool into a patient to define an insertion path to the target tissue site. The implant tool includes a shape memory cannula and a malleable needle at least partially disposed within an inner lumen of the cannula. The shape of the needle may be changed to accommodate different anatomical structures/features of the patient. Upon withdrawal of the needle from the cannula, the cannula may change shape, thereby changing the shape of the insertion path.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: February 10, 2015
    Assignee: Medtronic, Inc.
    Inventors: Eric H. Bonde, Martin T. Gerber
  • Patent number: 8938295
    Abstract: An improvement in a light therapy device including multiple light-emitting diodes (LEDs) positioned in a handheld portable device is disclosed. Where the housing and the LEDs are configured to have direct contact with the skin or tissue of the user without any intermediary materials, and light the surface and underlying layers of tissue for photodynamic stimulation of the cells. Two iterations of the device utilize light known to have a bactericidal effect in the case or acne or Rosacea. The devices are fabricated from an injection molded plastic housing. The housing contains an arrangement of 36-72 LEDs on a circuit board in an arrangement to provide even lighting over the skin or tissue surface.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: January 20, 2015
    Assignee: LED Intellectual Properties, LLC
    Inventors: Craig Baird, Stan Stanbridge
  • Patent number: 8918157
    Abstract: A method of manufacturing an implantable medical lead is disclosed herein. The method may include: providing a lead body including a proximal end, a distal end, and an electrode near the distal end; provide a conductor extending between the proximal and distal ends; providing a crimp including a ribbon-like member and extending the ribbon-like member around the conductor; and mechanically and electrically connecting the ribbon-like member to the electrode.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: December 23, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Keith Victorine, Steven R. Conger, Greg Kampa, Dorab N. Sethna, Daniel Ephraim, Sean Matthew Desmond
  • Patent number: 8918156
    Abstract: A method of manufacturing an implantable medical lead is disclosed herein. The method may include: providing a lead body including a proximal end, a distal end, and an electrode near the distal end; provide a conductor extending between the proximal and distal ends; providing a crimp including a ribbon-like member and extending the ribbon-like member around the conductor; and mechanically and electrically connecting the ribbon-like member to the electrode.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: December 23, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Keith Victorine, Steven R. Conger, Greg Kampa, Dorab N. Sethna, Daniel Ephraim, Sean Matthew Desmond
  • Patent number: 8918155
    Abstract: A method of manufacturing an implantable medical lead is disclosed herein. The method may include: providing a lead body including a proximal end, a distal end, and an electrode near the distal end; provide a conductor extending between the proximal and distal ends; providing a crimp including a ribbon-like member and extending the ribbon-like member around the conductor; and mechanically and electrically connecting the ribbon-like member to the electrode.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: December 23, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Keith Victorine, Steven R. Conger, Greg Kampa, Dorab N. Sethna, Daniel Ephraim, Sean Matthew Desmond
  • Patent number: 8914093
    Abstract: A method of manufacturing an implantable medical lead is disclosed herein. The method may include: providing a lead body including a proximal end, a distal end, and an electrode near the distal end; provide a conductor extending between the proximal and distal ends; providing a crimp including a ribbon-like member and extending the ribbon-like member around the conductor; and mechanically and electrically connecting the ribbon-like member to the electrode.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: December 16, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Keith Victorine, Steven R. Conger, Greg Kampa, Dorab N. Sethna, Daniel Ephraim, Sean Matthew Desmond
  • Patent number: 8914094
    Abstract: A method of manufacturing an implantable medical lead is disclosed herein. The method may include: providing a lead body including a proximal end, a distal end, and an electrode near the distal end; provide a conductor extending between the proximal and distal ends; providing a crimp including a ribbon-like member and extending the ribbon-like member around the conductor; and mechanically and electrically connecting the ribbon-like member to the electrode.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: December 16, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Keith Victorine, Steven R. Conger, Greg Kampa, Dorab N. Sethna, Daniel Ephraim, Sean Matthew Desmond
  • Patent number: 8914119
    Abstract: Various methods and apparatuses are disclosed that concern delivering electrical stimulation to a brain at a plurality of different stimulation frequencies, sensing one or more bioelectrical signals, and identifying a bioelectrical resonance response of the brain to the electrical stimulation. The bioelectrical resonance response may be identified based on a parameter of oscillation of the one or more bioelectrical signals and indicative of resonance of an area of the brain to one stimulation frequency of the plurality of stimulation frequencies. A stimulation frequency parameter for a therapy may be set based on the identified bioelectrical resonance response, wherein the stimulation frequency parameter is set at or near the one stimulation frequency.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: December 16, 2014
    Assignee: Medtronic, Inc.
    Inventors: Jianping Wu, Dwight E. Nelson
  • Patent number: 8914092
    Abstract: A method of manufacturing an implantable medical lead is disclosed herein. The method may include: providing a lead body including a proximal end, a distal end, and an electrode near the distal end; provide a conductor extending between the proximal and distal ends; providing a crimp including a ribbon-like member and extending the ribbon-like member around the conductor; and mechanically and electrically connecting the ribbon-like member to the electrode.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: December 16, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Keith Victorine, Steven R. Conger, Greg Kampa, Dorab N. Sethna, Daniel Ephraim, Sean Matthew Desmond
  • Patent number: 8909346
    Abstract: Protocols are provided for the use of frequency specific microcurrent in conjunction with dental or orthodontic procedures to treat or prevent inflammation induced complications. Specific protocols are disclosed for use in conjunction with gingival surgery and chronic periodontitis, implant/osseous periodontal surgery, general post operative trauma, pulpal trauma, pulpal inflammation, root canal post op, chronic osteonecrosis, osteonecrosis surgery post op, orthodontic pain prevention, and orthodontic mid-adjustment procedures.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: December 9, 2014
    Inventor: Mary Ellen S. Chalmers
  • Patent number: 8886276
    Abstract: A method for making a medical electrical lead electrode assembly includes the steps of: forming an insulative carrier from an insulative material; coupling at least one conductive component to the carrier by inserting a pre-formed tab of the conductive component through the carrier, from a first side thereof to a second side thereof, so that the conductive component is secured to the carrier with the tab extending along a surface of the second side of the carrier and an inward facing surface of an electrode portion of the conductive component being disposed against a surface of the first side of the carrier; coupling an elongate flexible conductor to the tab of the component; and forming an insulative layer over the second side of the carrier, the tab and the conductor electrically coupled to the tab.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: November 11, 2014
    Assignee: Medtronic, Inc.
    Inventors: Sean P. Skubitz, Michael E. Metzler, Mary L. Boatwright, Stephen L. Bolea, Jessica L. Tower
  • Patent number: 8868205
    Abstract: A system and method for determining physiological parameters based on electrical impedance measurements is provided. One method includes obtaining electrical measurement signals acquired from a plurality of transducers coupled to a surface of an object and constructing a system matrix to define one or more relationships between the impedance measurement signals. The method also includes decomposing the system matrix to separate the electrical measurement signals.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: October 21, 2014
    Assignee: General Electric Company
    Inventors: Alexander Seth Ross, Jeffrey Michael Ashe
  • Patent number: 8868217
    Abstract: Devices and methods of treating a targeted body tissue by stimulating the body tissue with an electric current. In one embodiment, an apparatus includes an electrode carrier configured to be removably coupled to an interior surface of an orthosis. The electrode carrier includes a recess configured to matingly receive a portion of an electrode. The electrode carrier is electrically coupled to the electrode when the portion of the electrode is disposed within the recess. A connection member is electrically coupled to the electrode carrier and is configured to be releasably coupled to a surface of the orthosis. The electrode carrier is electrically coupled to the orthosis when the connection member is coupled to the orthosis. In some embodiments, the electrode carrier is configured to be removably coupled to the interior surface of the orthosis. In some embodiments, at least a portion of the electrode is constructed of an absorptive material.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: October 21, 2014
    Assignee: Bioness Neuromodulation Ltd.
    Inventors: Amit Dar, Mark Rubin, Shmuel Springer, Amir Cohen
  • Patent number: 8849416
    Abstract: An implantable device (100) having an electronic component (110) and a biologic materials component (130). The biologic materials component has target cells in a matrix that interfaces the electronic component with the surrounding environment.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: September 30, 2014
    Assignee: University of Rochester
    Inventor: Spencer Rosero
  • Patent number: 8834384
    Abstract: Apparatus is provided of locating the fossa ovalis in a patient by locating at least one of the His bundle, the plane of the interatrial septum, and the coronary sinus ostium in a patient, and thereafter locating the fossa ovalis on the basis of one or more predetermined distances between these locations. Software is also provided that can determine and display the location of the fossa ovalis in a patient based on predetermined distances between the locations. Such software can for example be provided within an electroanatomical system. Methods of determining the location of the fossa ovalis, performed by either a clinician or a central processing unit-controlled surgical system, are also provided and determined using predetermined measurements from defined locations. An apparatus for locating the fossa ovalis and performing a transseptal puncture is also provided.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: September 16, 2014
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventor: Subramaniam C. Krishnan
  • Patent number: 8827904
    Abstract: A method and apparatus for providing status of a parameter that includes detecting an alert level of a parameter monitored by an implanted medical device, transmitting data corresponding to the detected alert level from the implanted medical device to an external monitor, scheduling a follow-up interrogation session after receiving transmitted data corresponding to the detected alert level, and retrieving updated data from the implanted medical device corresponding to the monitored parameter during the follow-up interrogation session.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: September 9, 2014
    Assignee: Medtronic, Inc.
    Inventors: James J. Ball, Sean B. McAdams, Chris T. House
  • Patent number: 8825173
    Abstract: For supplying energy to a medical implant (100) in a patient's body a receiver (102) cooperates with an external energizer (104) so that energy is wirelessly transferred. A feedback communication system (109) sends feedback information from the receiver to the energizer, the feedback information being related to the transfer of energy to the receiver. The feedback communication system communicates using the patient's body as an electrical signal line. In particular, the communication path between the receiver and the external energizer can be established using a capacitive coupling, i.e. the feedback information can be capacitively transferred over a capacitor having parts outside and inside the patient's body. An energy balance between the amount of energy received in the receiver and the energy used by the medical implant can be followed over time, and then the feedback information is related to the energy balance.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: September 2, 2014
    Inventor: Peter Forsell
  • Patent number: 8825165
    Abstract: A method for altering operation of a nerve related to a given body condition includes the steps of: laparascopically gaining access to the endopelvic area of the abdomen through the abdominal wall; implanting a multiple channel electrode through the access on endopelvic portions of at least one nerve of the sciatic nerve, the pudendus nerve, or both; and operating the electrode to electrostimulate the at least one nerve.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: September 2, 2014
    Inventor: Marc Possover
  • Patent number: 8808977
    Abstract: The present invention relates to a method for illuminating the viruses in a circulatory blood, comprising the following steps of: 1) Adding an anticoagulant into a whole blood source and establishing a circulation system for the whole blood source; 2) Withdrawing the whole blood with the anticoagulant into a plasma-separating device for a separation, when finished, directly pumping the red-blood cells back into the whole blood source and transporting the plasma into a mixing transport pump after the separation; 3) Meanwhile, pumping a photosensitizer methylene blue into the mixing transport pump so that the methylene blue is mixed with the plasma and pumped together into a plasma container; 4) Using an illumination device to illuminate the plasma in the plasma container for virus illumination, and pumping the virus-illuminated plasma into a removing device for removing off the photosensitizer; 5) The methylene blue being absorbed by the removing device and the plasma illuminated being transfused back into the
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: August 19, 2014
    Assignee: Beijing Jingjing Medical Equipment Co., Ltd
    Inventors: Weixing Wu, Yuen Kam
  • Patent number: 8808341
    Abstract: The objective is to obtain a respiratory induction apparatus and a particle beam therapy system in which respiration can appropriately be induced by accurately evaluating the respiration.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: August 19, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventor: Takaaki Iwata
  • Patent number: 8798767
    Abstract: An implantable medical lead exhibits reduced heating under MRI conditions. The lead includes a multi-layer coil conductor including an inner coil layer, a middle coil layer disposed around the inner coil layer, and an outer coil layer disposed around the middle coil layer. Each of the coil layers is characterized by one or more of a filar thickness, a coil pitch, or a coil diameter configured such that the coil conductor exhibits a high inductance when exposed to MRI radiation. Each of the coil layers is electrically connected to the other coil layers to provide parallel conductive paths resulting in a coil conductor resistance suitable for defibrillation lead applications.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: August 5, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Arthur J. Foster, Christopher Perrey, Stephen Earl DeRoche
  • Patent number: 8798764
    Abstract: A physiological signal of a patient is sensed with sense electrodes symmetrically arranged relative to a stimulation electrode. In some examples, a member includes a plurality of relatively small electrodes that are configured to function as both sense and stimulation electrodes. One or more of the electrodes may be selected as stimulation electrodes and two or more different electrodes of the member may be selected as sense electrodes that are symmetrically arranged relative to the one or more selected stimulation electrodes. In some examples, a member includes a plurality of levels of segmented sense electrodes and a plurality of levels of stimulation electrodes. The levels of sense electrodes are arranged such that each level of stimulation electrodes is adjacent at least two levels of sense electrodes symmetrically arranged relative to the level of stimulation electrodes.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: August 5, 2014
    Assignee: Medtronic, Inc.
    Inventors: Gabriela C. Molnar, Scott R. Stanslaski
  • Patent number: 8792991
    Abstract: Techniques for modeling therapy fields for therapy delivered by medical devices are described. Each therapy field model is based on a set of therapy parameters and represents where therapy will propagate from the therapy system delivering therapy according to the set of therapy parameters. Therapy field models may be useful in guiding the modification of therapy parameters. As one example, a processor compares an algorithmic model of a therapy field to a reference therapy field and adjusts at least one therapy parameter based on the comparison. As another example, a processor adjusts at least one therapy parameter to increase an operating efficiency of the therapy system while substantially maintaining the modeled therapy field.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: July 29, 2014
    Assignee: Medtronic, Inc.
    Inventors: Martin T. Gerber, John C. Rondoni
  • Patent number: 8790819
    Abstract: A compact implantable medical assembly is comprised of a medical device connected to an electrochemical cell. The medical device is comprised of a housing enclosing at least one electrical circuit and including an end having a perimeter edge and a contact opening therethrough. The electrochemical cell is comprised of a casing having a sidewall extending to a distal end and a proximal end forming a proximal opening. The proximal casing end is joined to the medical device housing. A glass-to-metal seal supports a terminal pin extending from within the casing through the proximal casing opening and through the contact opening in the end of the housing. The terminal pin is connected to the electrical circuit contained within the housing. That way the cell serves as the power source for the medical device with both the cell and medical device being exposed to body fluid.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: July 29, 2014
    Assignee: Greatbatch Ltd.
    Inventors: Gary Freitag, Dominick Frustaci
  • Patent number: 8790288
    Abstract: An arteriovenous graft system is described. The arteriovenous graft system includes an arteriovenous graft that is well suited for use during hemodialysis. In order to minimize or prevent arterial steal, at least one valve device is positioned at the arterial end of the arteriovenous graft. In one embodiment, for instance, the arteriovenous graft system includes a first valve device positioned at the arterial end and a second valve device positioned at the venous end. In one embodiment, the valve devices may include an inflatable balloon that, when inflated, constricts and closes off the arteriovenous graft. If desired, a single actuator can be used to open and close both valve devices.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: July 29, 2014
    Inventor: David L. Cull
  • Patent number: 8788065
    Abstract: A method is provided for renal neuromodulation. One step of the method includes providing an expandable support member having a cuff-like configuration and including a main body portion (MBP). The MBP includes a lumen for engaging a wall of a blood vessel including a portion of a renal vasculature. At least one electrode connected with the MBP is arranged to selectively deliver electric current to a desired location. An insulative material is attached to at least a portion of the MBP. Next, the MBP is implanted extravascularly so that the MBP is in direct contact with a portion of the renal vasculature. At least one electrode is positioned substantially adjacent a desired location where modulation of the sympathetic nervous system (SNS) is effective to alter renal function. Electric current is then delivered to the at least one electrode to effect a change in the SNS.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: July 22, 2014
    Assignee: The Cleveland Clinic Foundation
    Inventors: Ali R. Rezai, Roy K. Greenberg, Milind Deogaonkar
  • Patent number: 8788036
    Abstract: A minimally invasive method of introducing an electrode to electrically stimulate one or both vocal cords of a subject includes inserting a hollow needle from outside of the subject's body into a postcricoidal region lateral to a posterior cricoarytenoid muscle and forming an insertion path downwardly towards a cricothyroid joint of the subject. The method also includes introducing the electrode via the hollow needle and positioning the electrode relative to at least one vocal cord muscle of the subject based on the insertion path.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: July 22, 2014
    Assignee: MED-EL Elektromedizinische Geraete GmbH
    Inventor: Werner Lindenthaler
  • Patent number: 8784460
    Abstract: The present invention is directed to an apparatus that includes a microcurrent delivery device portion and at least one independent sensory cue delivery means. The independent sensory cue delivery means can provide an independent sensory cue selected from the group consisting of vibration, heat, cool, skin irritation, tingling, fragrance or auditory.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: July 22, 2014
    Assignee: McNeil-PPC, Inc.
    Inventors: Leo B. Kriksunov, Aliya Z. Omer, Edward Roche, Joshua Ghaim, Naomi Furgiuele
  • Patent number: 8788042
    Abstract: A preferred frequency is identified, being usable to stimulate a neurological target within a mammalian body using at least one microelectrode positioned at or near the target. To establish efficient and effective stimulation, an impedance analyzer is provided for measuring electrical impedance values indicative of a microelectrode-tissue interface across a range of different frequencies. A preferred one of the measured electrical impedance values is identified as being closest to a pure resistance. The neurological target can then be stimulated at or near the frequency associated with the preferred impedance value (peak resistance frequency), thereby promoting desirable traits, such as optimum charge transfer, minimum signal distortion, increased stimulation efficiency, and prevention of microelectrode corrosion. The peak resistance frequency can be used to determine an preferred pulse shape.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: July 22, 2014
    Assignee: Ecole Polytechnique Federale de Lausanne (EPFL)
    Inventors: Andre Mercanzini, Philippe Renaud
  • Patent number: 8765116
    Abstract: An apparatus and method for administering focused energy to a body using either a single energy applicator or multiple energy applicators to supply heat prior to, concurrently with and/or after delivery of a drug, gene and/or viral vector. A multi-modality treatment using a localized, focused and/or regional heating apparatus, which supplies heat to a defined area of a patient's body. The apparatus is used heat is used to pretreat a specific body site, to activate thermoactivated drugs, genes, or viral vectors, and/or to deliver drugs, genes, or viral vectors to the specific body site. The heating apparatus is provided with one or more variable and adjustable probes and one or more delivery ports heat the specific treatment site and to deliver the thermoactivated drugs and genes to the specific treatment site. Each probe may optionally be provided with one or more temperature sensors to allow for the temperature in the specific treatment site and the surrounding tissue to be properly regulated.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: July 1, 2014
    Assignee: Medifocus, Inc.
    Inventor: John Mon
  • Patent number: 8750984
    Abstract: A device for stimulation via electric and magnetic fields is provided. The autonomic/vegetative nervous system can be controlled by signals in the frequency ranges of 0.05 to 0.15 Hz and 0.15 to 0.30 Hz, respectively. By addition of characteristic sinusoidal oscillations between the head and a peripheral area with the corresponding low-frequency sympathetic or parasympathetic control frequency as base oscillation and with application-typical EEG frequencies and higher-frequency sinusoidal oscillations in the range of ca. 250 to 1500 Hz, characteristic stimulation programs are established. These are applied by field applicators in the upper body area and in the lower body. The associated mat applicators distribute field energy. The field applicator is equipped with a combination of a magnetic-field-generating coil arrangement and an electrode arrangement generating the electric field. The electrode generating the electric field can at the same time be designed as a magnetic-field-generating coil.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: June 10, 2014
    Assignee: Actegy Ltd.
    Inventors: Stewart Penny, Manfred Krauss, Roland Fischer, Werner Schmidt, Mario Mobius
  • Patent number: 8725272
    Abstract: A high-frequency treatment instrument of the present invention includes: a pair of forceps members that includes a conductive electrode portion and an insulating portion and is supported by the forceps rotation shaft so as to be relatively rotatable; an operation section configured to open and close the pair of forceps members; a link mechanism that is attached to the pair of forceps members and includes a pair of link members; an operation wire that connects the link mechanism to the operation section; a rotation contact member that is rotatably connected to the pair of forceps members; and a regulation wire in which one end thereof is electrically connected to the rotation contact member, a part of an intermediate portion thereof is disposed so as to pass through a space between the respective link members, and the other end thereof is electrically connected to a power supply.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: May 13, 2014
    Assignee: Olympus Medical Systems Corp.
    Inventors: Megumi Kimura, Keita Suzuki
  • Patent number: 8718755
    Abstract: The present invention relates to methods and devices for determining the state of a neural system. In one embodiment, a plurality of stimuli to the system can be delivered to the system, and then the resulting respective responses can be analyzed to determine whether the system state is static, or whether it is undergoing dynamic changes. In another aspect of the invention, a single stimulus having a plurality of components can be administered, and the responses to each component can be contrasted and compared to determine the state of the neural system. In each case, this information can be used to predict the occurrence of neural perturbations or episodes associated with a change in the state of the neural system.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: May 6, 2014
    Assignee: George Mason Intellectual Properties, Inc.
    Inventors: Bruce Gluckman, Kristen Richardson, Steven Weinstein, Steven Schiff
  • Patent number: 8715150
    Abstract: The present invention relates to a system for the physical manipulation of free magnetic rotors in a circulatory system using a remotely placed magnetic field-generating stator. In one aspect, the invention relates to the control of magnetic particles in a fluid medium using permanent magnet-based or electromagnetic field-generating stator sources. Such a system can be useful for increasing the diffusion of therapeutic agents in a fluid medium, such as a human circulatory system, which can result in substantial clearance of fluid obstructions, such as vascular occlusions, in a circulatory system resulting in increased blood flow. Examples of vascular occlusions targeted by the system include, but are not limited to, atherosclerotic plaques, including fibrous caps, fatty buildup, coronary occlusions, arterial stenosis, restenosis, vein thrombi, arterial thrombi, cerebral thrombi, embolisms, hemorrhages, other blood clots, and very small vessels.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: May 6, 2014
    Assignee: Pulse Therapeutics, Inc.
    Inventor: Francis M. Creighton
  • Patent number: 8712129
    Abstract: Method for registering a three dimensional (3D) pre acquired image coordinates system with a Medical Positioning System (MPS) coordinate system and a two dimensional (2D) image coordinate system, the method comprising acquiring a 2D image of a volume of interest, the volume including an organ, the 2D image being associated with the 2D coordinate system, acquiring MPS points within the organ, the MPS points being associated with the MPS coordinate system, the MPS coordinate system being registered with the 2D coordinate system, extracting a 3D image model of the organ from a pre acquired 3D image of the volume of interest, estimating a volumetric model of the organ from the acquired MPS points, and registering the 3D coordinate system with the MPS coordinate system by matching the extracted 3D image model and the estimated volumetric model of the organ.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: April 29, 2014
    Assignee: MediGuide Ltd.
    Inventors: Gera Strommer, Uzi Eichler, Liat Schwartz
  • Patent number: 8700180
    Abstract: A method of providing therapy to a patient having a disorder using an electrode located adjacent a peripheral target neural region. The method comprises conveying electrical stimulation energy from the electrode that stimulates a first set of nerve endings in the peripheral target neural region. The method further comprises increasing an activation threshold of a second set of nerve endings in the peripheral target neural region, thereby rendering the second set of nerve endings less excitable to the electrical stimulation energy. The first set of nerve endings are relatively far from the electrode and the second set of nerve endings are relatively near the electrode.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: April 15, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Kerry Bradley
  • Patent number: 8676324
    Abstract: Transcutaneous electrical nerve stimulation devices and magnetic stimulation devices are disclosed, along with methods of treating medical disorders using energy that is delivered noninvasively by such devices. The disorders comprise migraine and other primary headaches such as cluster headaches, including nasal or paranasal sinus symptoms that resemble an immune-mediated response (“sinus” headaches). The devices and methods may also be used to treat rhinitis, sinusitis, or rhinosinusitis, irrespective of whether those disorders are co-morbid with a headache. They may also be used to treat other disorders that may be co-morbid with migraine or cluster headaches, such as anxiety disorders. In preferred embodiments of the disclosed methods, one or both of the patient's vagus nerves are stimulated non-invasively. In other embodiments, parts of the sympathetic nervous system and/or the adrenal glands are stimulated.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: March 18, 2014
    Assignee: Electrocore, LLC
    Inventors: Bruce J. Simon, Joseph P. Errico, John T. Raffle
  • Patent number: 8676337
    Abstract: Techniques are disclosed for recharging an Implantable Medical Device (IMD). In one embodiment, a first external coil is positioned on one side of a patient's body, such as on a front side of the torso in proximity to the IMD. A second external coil is positioned on an opposite side of the patient's body, such as on the back of the torso. A recharging device generates a current in each of the coils, inductively coupling the first and the second coils to the secondary recharge coil of the IMD. According to another aspect, each of the two external coils may wrap around a portion of the patient's body, such as the torso or head, and are positioned such that the IMD lies between the coils. According to this aspect, current generated in the coils inductively couples to a second recharge coil that is angled within the patient's body.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: March 18, 2014
    Assignee: Medtronic, Inc.
    Inventor: Todd A. Kallmyer
  • Patent number: 8676330
    Abstract: Non-invasive electrical nerve stimulation devices and magnetic stimulation devices are disclosed, along with methods of treating medical disorders using energy that is delivered noninvasively by such devices. The disorders comprise migraine and other primary headaches such as cluster headaches, including sinus symptoms that resemble an immune-mediated response (“sinus” headaches), irrespective of whether those symptoms arise from an allergy that is co-morbid with the headache. The disclosed methods may also be used to treat other disorders that may be co-morbid with migraine headaches, such as anxiety disorders. In preferred embodiments of the disclosed methods, one or both of the patient's vagus nerves are stimulated non-invasively. In other embodiments, parts of the sympathetic nervous system and/or the adrenal glands are stimulated.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: March 18, 2014
    Assignee: Electrocore, LLC
    Inventors: Bruce J. Simon, Joseph P. Errico, John T. Raffle
  • Patent number: 8670833
    Abstract: A system and method for applying stimulation to a target stimulation site within a patient, while avoiding undesirable eye movement side effects of the stimulation, are provided. The method includes determining whether eye movement, sensed by internal or external electrodes, is a side effect of a conveyed electrical stimulus. If the eye movement is a side effect, the electrical current distribution of the stimulus is modified in order to steer a locus of the electrical stimulus from one tissue region of the patient to another different tissue region of the patient, thereby mitigating the eye movement side effects. For example, the locus of the electrical stimulus may be steered away from the oculomotor nerve. Eye movement side effects of DBS treatment may include apraxia of lid opening, downward movement and adduction of only one eyeball, and/or continuous deviation of both eyeballs.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: March 11, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: James Makous, Brett Schleicher, Rafael Carbunaru, Kristen Jaax, Andrew DiGiore
  • Patent number: 8666505
    Abstract: A medical device includes a first substrate, a second substrate, a control module, and an energy storage device. The first substrate includes at least one of a first semiconductor material and a first insulating material. The second substrate includes at least one of a second semiconductor material and a second insulating material. The second substrate is bonded to the first substrate such that the first and second substrates define an enclosed cavity between the first and second substrates. The control module is disposed within the enclosed cavity. The control module is configured to at least one of determine a physiological parameter of a patient and deliver electrical stimulation to the patient. The energy storage device is disposed within the cavity and is configured to supply power to the control module.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: March 4, 2014
    Assignee: Medtronic, Inc.
    Inventors: Richard J. O'Brien, John K. Day, Paul F. Gerrish, Michael F. Mattes, David A. Ruben, Malcolm K. Grief
  • Patent number: 8652184
    Abstract: A resonant frequency device provided with a transmitter, an amplifier and an impedance matching circuit connected to an antenna, such as a plasma antenna. A voltage or current balun could be provided between the impedance matching circuit and the antenna.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: February 18, 2014
    Inventor: James E. Bare
  • Patent number: 8644954
    Abstract: Methods and systems of facilitating stimulation of a stimulation site within a patient include implanting a distal portion of a stimulating member such that the distal portion of the stimulating member is in communication with a stimulation site located within a patient, securing the distal portion of the stimulating member at a first securing site with a first securing device, forming at least two curves of opposite concavity with a proximal portion of the stimulating member, securing the stimulating member at a second securing site with a second securing device, and coupling a proximal end of the stimulating member to a stimulator. In some examples, the at least two curves of opposite concavity are located in between the first and second securing devices.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: February 4, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Kristen N. Jaax, Todd K. Whitehurst
  • Patent number: 8639362
    Abstract: The present invention comprises a chest band adapted to encircle the torso of a patient after having implant surgery. The chest band couples to an arm cuff by means of an adjustable strap. The arm cuff fits loosely over the patient's arm above the elbow and is adjustable, comprising a single strap material with mating hook and loop fastener devices to allow adjustability for different sized arms. The chest band had a tapered end that over folds a second end and the tapered end includes a hook and loop faster that releasably couples directly to the fabric of the chest band. An adjustable wrist cuff includes a direct means for fastening the cuff to the chest band, or optionally, a second adjustable strap to enable selective coupling of the wrist cuff to the chest band.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: January 28, 2014
    Inventor: Byron Zahler
  • Patent number: 8639342
    Abstract: A method for altering operation of a nerve related to a given body condition includes the steps of identifying at least one nerve root of a nerve related to the given body condition; laparoscopically implanting at least one electrode on the nerve root; and operating the electrode to electrostimulate the nerve root and alter operation of the nerve.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: January 28, 2014
    Inventor: Marc Possover
  • Patent number: 8634893
    Abstract: An insulative body of a medical electrical lead electrode assembly includes a pre-formed channel having a section extending at an angle to a longitudinal axis of the body. An electrode portion of a conductive component has an electrode contact surface facing outward from a first side of the body and a coupling portion embedded in the body. A conductor, which is coupled to the coupling portion of the component, is disposed in the channel.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: January 21, 2014
    Assignee: Medtronic, Inc.
    Inventors: Sean Patrick Skubitz, Mary L. Boatwright, Stephen L. Bolea, Jessica L. Tower, Michael E. Metzler
  • Patent number: 8634909
    Abstract: A magnetic arrangement is described for an implantable system for a recipient patient. A planar coil housing contains a signal coil for transcutaneous communication of an implant communication signal. A first attachment magnet is located within the plane of the coil housing and rotatable therein, and has a magnetic dipole parallel to the plane of the coil housing for transcutaneous magnetic interaction with a corresponding second attachment magnet.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: January 21, 2014
    Assignee: Med-El Elektromedizinische Geraete GmbH
    Inventors: Martin Zimmerling, Bernhard Jamnig
  • Patent number: 8615304
    Abstract: Detecting patterns in sensed implantable medical device (IMD) data is described. One implementation involves an IMD that includes a data-driven pattern detection network embodied on the IMD to detect a pattern from sensed patient data. The IMD also includes one or more algorithms embodied on the IMD to utilize the pattern to effect patient therapy.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: December 24, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Paul Higham, Atila Amiri
  • Patent number: 8611990
    Abstract: The present invention provides systems, methods and computer program products for monitoring a heart. According to one embodiment, the system includes an implantable registering unit. The registering unit comprises a first controller structured to register an electrical signal from the heart. The system includes a second controller in operable communication with the first controller. The second controller comprises a data repository structured to receive data corresponding to the registered electrical signal and being structured to store the data. The data repository stores data corresponding to a baseline electrical signal of the heart. The second controller is structured to receive the data from the first controller corresponding to the registered electrical signal and to compare the registered electrical signal to the baseline electrical signal to determine whether the heart is functioning properly.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: December 17, 2013
    Assignee: Lifescience Solutions LLC
    Inventor: Charles L. Richardson
  • Patent number: 8612009
    Abstract: The present invention relates to a multi-column paddle structure and its uses thereof to provide neuromodulation therapy to a patient.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: December 17, 2013
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Claudio A. Feler, John H. Erickson