Patents Assigned to Applied Material Inc.
  • Patent number: 12288724
    Abstract: A method of classification of a film non-uniformity on a substrate includes obtaining a color image of a substrate with the color image comprising a plurality of color channels, obtaining a standard color for the color image of the substrate, for each respective pixel along a path in the color image determining a difference vector between the a color of the respective pixel and the standard color to generate a sequence of difference vectors, sorting the pixels along the path into a plurality of regions including at least one normal region and at least one abnormal region based on the sequence of difference vectors, and classifying the at least one abnormal region as overpolished or underpolished based on at least one difference vector of a pixel at a boundary between the abnormal region and an adjacent normal region.
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: April 29, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Dominic J. Benvegnu, Nojan Motamedi
  • Patent number: 12285838
    Abstract: A chemical mechanical polishing system includes a platen to hold a polishing pad, a carrier head to hold a substrate against a polishing surface of the polishing pad, and a controller. The polishing pad has a polishing control groove. The carrier is laterally movable by a first actuator across the polishing pad and rotatable by a second actuator. The controller synchronizes lateral oscillation of the carrier head with rotation of the carrier head such that over a plurality of successive oscillations of the carrier head such that when a first angular swath of an edge portion of the substrate is at an azimuthal angular position about an axis of rotation of the carrier head the first angular swath overlies the polishing surface and when a second angular swath of the edge portion of the substrate is at the azimuthal angular position the second angular swath overlies the polishing control groove.
    Type: Grant
    Filed: November 9, 2023
    Date of Patent: April 29, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Jimin Zhang, Jianshe Tang, Brian J. Brown, Wei Lu, Priscilla Diep LaRosa
  • Patent number: 12287624
    Abstract: A method for time constraint management at a manufacturing system is provided. A first request to initiate a set of operations to be run at the manufacturing system is received. The set of operations include one or more operations that each have one or more time constraints. A first set of candidate substrates to be processed during the set of operations is determined. A first simulation of the set of operations for the first set of candidate substrates is run over a first period of time. The simulation generates a first simulation output indicate a first number of candidate substrates that were successfully processed during each of the simulated set of operations to reach the end of the first time period. The set of operations is initiated at the manufacturing system to process the first number of candidate substrates over the first time period.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: April 29, 2025
    Assignee: Applied Materials, Inc.
    Inventors: David E Norman, Fumio Kawada, Yuh Lin Ng
  • Patent number: 12289945
    Abstract: Embodiments described herein relate to sub-pixel circuits and methods of forming sub-pixel circuits that may be utilized in a display such as an organic light-emitting diode (OLED) display. The sub-pixel circuit includes a plurality of contact overhangs. The plurality of contact overhangs are disposed between adjacent sub-pixels of a sub-pixel circuit to be formed. The contact overhangs are formed over a metal grid exposed through a PDL structure. A cathode is deposited via evaporation deposition to be in contact with the contact overhang. The metal grid is perpendicular to a plurality of metal layers disposed on the substrate.
    Type: Grant
    Filed: March 3, 2022
    Date of Patent: April 29, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Jungmin Lee, Yu Hsin Lin, Chung-Chia Chen, Ji-young Choung, Dieter Haas, Si Kyoung Kim
  • Patent number: 12288670
    Abstract: A vapor deposition system and methods of operation thereof are disclosed. The vapor deposition system includes a vacuum chamber; a dielectric target within the vacuum chamber, the dielectric target having a front surface and a thickness; a substrate support within the vacuum chamber, the substrate support having a front surface spaced from the front surface of the dielectric target to form a process gap; and a signal generator connected to the dielectric target to generate a plasma in the vacuum chamber, the signal generator comprises a power source, the power source configured to prevent charge accumulation in the dielectric target. The method includes applying power to a dielectric target within a vacuum chamber to generate a plasma in a process gap between the dielectric target and a substrate support and pulsing the power applied to the dielectric target to prevent charge accumulation.
    Type: Grant
    Filed: March 2, 2022
    Date of Patent: April 29, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Abhijeet Laxman Sangle, Nilesh Patil, Vijay Bhan Sharma, Visweswaren Sivaramakrishnan
  • Patent number: 12288675
    Abstract: A plasma reactor has a cylindrical microwave cavity overlying a workpiece processing chamber, a microwave source having a pair of microwave source outputs, and a pair of respective waveguides. The cavity has first and second input ports in a sidewall and space apart by an azimuthal angle. Each of the waveguides has a microwave input end coupled to a microwave source output and a microwave output end coupled to a respective one of the first and second input ports, a coupling aperture plate at the output end with a rectangular coupling aperture in the coupling aperture plate, and an iris plate between the coupling aperture plate and the microwave input end with a rectangular iris opening in the iris plate.
    Type: Grant
    Filed: March 14, 2024
    Date of Patent: April 29, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Satoru Kobayashi, Hideo Sugai, Toan Tran, Soonam Park, Dmitry Lubomirsky
  • Patent number: 12288717
    Abstract: A method of forming an electronic device is disclosed. The method comprises forming depositing a metal on a substrate, the metal comprising one or more of copper (Cu), titanium (Ti), or tantalum (Ta). A metal cap is deposited on the metal. The metal cap comprises one or more of molybdenum (Mo), ruthenium (Ru), iridium (Ir), rhodium (Rh), palladium (Pd), silver (Ag), osmium (Os), platinum (Pt), or gold (Au). The substrate is then exposed to an anneal process, e.g., a hydrogen high-pressure anneal. The formation of the metal cap on the metal minimizes parasitic adsorption of hydrogen by the underlying metal.
    Type: Grant
    Filed: February 20, 2024
    Date of Patent: April 29, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Srinivas Gandikota, Steven C. H. Hung, Srinivas D. Nemani, Yixiong Yang, Susmit Singha Roy, Nikolaos Bekiaris
  • Patent number: 12288350
    Abstract: Methods for detecting areas of localized tilt on a sample using imaging reflectometry measurements include obtaining a first image without blocking any light reflected from the sample and obtaining a second image while blocking some light reflected from the sample at the aperture plane. The areas of localized tilt are detected by comparing first reflectance intensity values of pixels in the first image with second reflectance intensity values of corresponding pixels in the second image.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: April 29, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Mehdi Vaez-Iravani, Guoheng Zhao
  • Patent number: 12286703
    Abstract: An evaporation apparatus is described, particularly for evaporating a reactive material such as lithium. The evaporation apparatus includes an evaporation crucible for evaporating a liquid material, a material conduit for supplying the liquid material to the evaporation crucible, and a valve configured to close the material conduit by solidifying a part of the liquid material in the material conduit with a cooling device. The valve may include a cooling gas supply for a cooling gas, and the cooling device may be configured to cool the liquid material with the cooling gas. Further described are a vapor deposition apparatus for coating a substrate as well as an evaporation method.
    Type: Grant
    Filed: December 15, 2023
    Date of Patent: April 29, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Wolfgang Buschbeck, Stefan Bangert
  • Publication number: 20250129481
    Abstract: Vapor deposition processing chamber temperature control apparatus and vapor deposition processing chambers incorporating the temperature control apparatus are described. The temperature control apparatus has a base plate with a plurality of reflectors arranged in at least two annular zones, each annular zone separated into at least two sector zones. The reflectors are configured to decrease a specific side-to-side temperature non-uniformity profile of a heated substrate support positioned above the base plate in the vapor deposition processing chamber.
    Type: Application
    Filed: October 19, 2023
    Publication date: April 24, 2025
    Applicant: Applied Materials, Inc.
    Inventors: Muhannad Mustafa, Aditya Chuttar
  • Publication number: 20250132175
    Abstract: A window component, a chamber, and a method of processing substrates are described herein. In one example, a semiconductor process chamber window component comprises a transparent quartz body. The body comprises a top surface, a bottom surface, a central portion disposed near a center axis of the body, and one or more fluid channels formed within the body. The one or more fluid channels are configured to flow a fluid from a first side of the body towards a second side of the body and the first side is disposed opposite the second side.
    Type: Application
    Filed: October 18, 2023
    Publication date: April 24, 2025
    Applicant: Applied Materials, Inc.
    Inventors: Tetsuya ISHIKAWA, Kim Ramkumar VELLORE, Amir H. TAVAKOLI
  • Publication number: 20250133965
    Abstract: Exemplary substrate processing methods are described. The methods may include providing a scandium-doped aluminum nitride layer on a metal layer. They may further include etching a portion of the scandium-doped aluminum nitride layer with an etching composition. The etching composition may include greater than or about 80 wt. % phosphoric acid. The compositions may further be characterized by a temperature of greater than or about 90° C. during etching.
    Type: Application
    Filed: August 25, 2022
    Publication date: April 24, 2025
    Applicant: Applied Materials, Inc.
    Inventors: Vijay Bhan Sharma, Bharatwaj Ramakrishnan, Sukti Chatterjee
  • Publication number: 20250132165
    Abstract: Methods of removing molybdenum oxide from a surface of a substrate comprise exposing the substrate having a molybdenum oxide layer on the substrate to a halide etchant having the formula RmSiX4-m, wherein m is an integer from 1 to 3, X is selected from iodine (I) and bromine (Br) and R is selected from the group consisting of a methyl group, ethyl group, propyl group, butyl group, cyclohexyl group and cyclopentyl group. The methods may be performed in a back-end-of-the line (BEOL) process, and the substrate contains a low-k dielectric material.
    Type: Application
    Filed: October 20, 2023
    Publication date: April 24, 2025
    Applicant: Applied Materials, Inc.
    Inventors: Jiajie Cen, Feng Q. Liu, Zheng Ju, Zhiyuan Wu, Kevin Kashefi, Mark Saly, Xianmin Tang
  • Patent number: 12281387
    Abstract: Organometallic precursors and methods of depositing high purity metal films are discussed. Some embodiments utilize a method comprising exposing a substrate surface to an organometallic precursor comprising one or more of molybdenum (Mo), tungsten (W), osmium (Os), technetium (Tc), manganese (Mn), rhenium (Re) or ruthenium (Ru), and an iodine-containing reactant comprising a species having a formula RIx, where R is one or more of a C1-C10 alkyl, C3-C10 cycloalkyl, C2-C10 alkenyl, or C2-C10 alkynyl group, I is an iodine group and x is in a range of 1 to 4 to form a carbon-less iodine-containing metal film. Some embodiments advantageously provide methods of forming metal films having low carbon content (e.g., having greater than or equal to 95% metal species on an atomic basis), without using an oxidizing agent or a reductant.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: April 22, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Feng Q. Liu, Mark Saly, David Thompson, Annamalai Lakshmanan, Avgerinos V. Gelatos, Joung Joo Lee
  • Patent number: 12283460
    Abstract: A system and method for creating a beam current profile that eliminates variations that are not position dependent is disclosed. The system includes two Faraday sensors; one which is moved across the ion beam and a second that remains at or near a certain location. The reference Faraday sensor is used to measure temporal variations in the beam current, while the movable Faraday sensor measures both the position dependent variations and the temporal variations. By combining these measurements, the actual position dependent variations of the scanned ion beam can be determined. This resultant beam current profile can then be used to control the scan speed of the electrostatic or magnetic scanner.
    Type: Grant
    Filed: August 29, 2022
    Date of Patent: April 22, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Tyler Wills, Richard Allen Sprenkle
  • Patent number: 12280465
    Abstract: Apparatus and method for removing material from the susceptor of a batch processing chamber are described. The apparatus comprises a polishing tool including a rotatable platen positioned above the susceptor. A method comprises contacting material deposited on the susceptor with the rotatable platen to remove the material from the susceptor.
    Type: Grant
    Filed: October 16, 2023
    Date of Patent: April 22, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Vijayabhaskara Venkatagiriyappa, Nitin Bhargav, Tae Kwang Lee
  • Patent number: 12281382
    Abstract: Methods of selectively depositing blocking layers on conductive surfaces over dielectric surfaces are described. In some embodiments, a 4-8 membered substituted heterocycle is exposed to a substrate to selectively form a blocking layer. In some embodiments, a layer is selectively deposited on the dielectric surface after the blocking layer is formed. In some embodiments, the blocking layer is removed.
    Type: Grant
    Filed: May 24, 2023
    Date of Patent: April 22, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Lakmal C. Kalutarage, Bhaskar Jyoti Bhuyan, Aaron Dangerfield, Feng Q. Liu, Mark Saly, Michael Haverty, Muthukumar Kaliappan
  • Patent number: 12283500
    Abstract: A direct current (DC) power is supplied to a heating element embedded into a substrate support assembly (SSA). A voltage across the heating element and a current through the heating element is measured as the DC power is supplied to the heating element. A resistance of the heating element is determined based on the measured voltage and current. A temperature measurement for the heating element and/or a zone including the heating element is obtained based on signal(s) of a temperature sensor. A temperature model is updated based on the determined resistance and the obtained temperature measurement. The heating element embedded in the SSA and/or an additional heating element embedded in the SSA or in another SSA is controlled based on the updated temperature model during a substrate process.
    Type: Grant
    Filed: April 12, 2024
    Date of Patent: April 22, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Paul Zachary Wirth, Kiyki-Shiy Shang, Mikhail Taraboukhine
  • Patent number: 12283484
    Abstract: Embodiments disclosed within include a method for etching a hardmask layer includes forming a photoresist layer comprising an organometallic material on a hardmask layer comprising a metal-containing material, exposing the photoresist layer to ultraviolet radiation through a mask having a selected pattern, removing un-irradiated areas of the photoresist layer to pattern the photoresist layer, forming a passivation layer comprising a carbon-containing material selectively on a top surface of the patterned photoresist layer, including selectively depositing passivation material over a top surface of a patterned photoresist layer trimming undesired portions of the passivation material, and etching the hardmask layer exposed by the patterned photoresist layer having the passivation layer formed thereon.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: April 22, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Nancy Fung, Larry Gao
  • Patent number: 12282256
    Abstract: Some embodiments include a method of depositing a photoresist onto a substrate in a processing chamber. In an embodiment, the method comprises flowing an oxidant into the processing chamber through a first path in a showerhead, and flowing an organometallic into the processing chamber through a second path in the showerhead. In an embodiment, the first path is isolated from the second path so that the oxidant and the organometallic do not mix within the showerhead. In an embodiment, the method further comprises that the oxidant and the organometallic react in the processing chamber to deposit the photoresist on the substrate.
    Type: Grant
    Filed: October 22, 2021
    Date of Patent: April 22, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Farzad Houshmand, Wayne French, Anantha Subramani, Kelvin Chan, Lakmal Charidu Kalutarage, Mark Joseph Saly