Patents Assigned to Applied Material
  • Patent number: 11549183
    Abstract: Provided are gas distribution apparatus with a showerhead having a front plate and a back plate spaced to form a gas volume, the front plate having an inner surface adjacent the gas volume and an outer surface with a plurality of apertures extending therethrough, the gas volume having a center region and an outer region; a first inlet in fluid communication with the center region of the gas volume, the inlet having an inside and an outside; and a mixer disposed on the inside of the inlet to increase gas flow temperature. Also provided are processing chamber apparatus and methods of depositing a film.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: January 10, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Ashutosh Agarwal, Sanjeev Baluja, Dhritiman Subha Kashyap, Kartik Shah, Yanjun Xia
  • Publication number: 20230002893
    Abstract: Bottom-fed ampoules for a semiconductor manufacturing precursors and methods of use are described. The ampoules comprise an outer cylindrical wall and an inner cylindrical wall defining a flow channel in between and a bottom wall having a top surface with a plurality of concentric elongate walls, each wall comprising an opening offset from the opening in adjacent walls defining a gas exchange zone through which a carrier gas flows in contact with the precursor.
    Type: Application
    Filed: July 2, 2021
    Publication date: January 5, 2023
    Applicant: Applied Materials, Inc.
    Inventors: David Marquardt, Carl White, Mohith Verghese
  • Publication number: 20230005765
    Abstract: Exemplary semiconductor processing systems may include a processing chamber. The systems may include a remote plasma unit coupled with the processing chamber. The systems may include an adapter coupled between the remote plasma unit and the processing chamber. The adapter may be characterized by a first end and a second end opposite the first end. The remote plasma unit may be coupled with the adapter at the first end. The adapter may define a first central channel extending more than 50% of a length of the adapter from the first end of the adapter. The adapter may define a second central channel extending less than 50% of the length of the adapter from the second end of the adapter. The adapter may define a transition between the first central channel and the second central channel.
    Type: Application
    Filed: July 2, 2021
    Publication date: January 5, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Son T. Nguyen, Kenneth D. Schatz, Anh N. Nguyen, Soonwook Jung, Ryan Pakulski, Anchuan Wang, Zihui Li
  • Publication number: 20230002888
    Abstract: Methods of depositing high purity metal films are discussed. Some embodiments utilize a method comprising exposing a substrate surface to an organometallic precursor comprising a metal selected from the group consisting of molybdenum (Mo), tungsten (W), osmium (Os), rhenium (Re), iridium (Ir), nickel (Ni) and ruthenium (Ru) and an iodine-containing reactant comprising a species having a formula RIx, where R is one or more of a C0-C10 alkyl, cycloalkyl, alkenyl, or alkynyl group and x is in a range of 1 to 4 to form a carbon-less iodine-containing metal film; and exposing the carbon-less iodine-containing metal film to a reductant to form a metal film. Some embodiments deposit a metal film with greater than or equal to 90% metal species on an atomic basis.
    Type: Application
    Filed: July 1, 2021
    Publication date: January 5, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Feng Q. Liu, Mark Saly, David Thompson
  • Publication number: 20230005780
    Abstract: Exemplary substrate support assemblies may include an electrostatic chuck body defining a substrate support surface. The support assemblies may include a support stem coupled with the electrostatic chuck body. The support assemblies may include an electrode embedded within the electrostatic chuck body proximate the substrate support surface. The support assemblies may include a ground electrode embedded within the electrostatic chuck body. The support assemblies may include one or more channels formed within the electrostatic chuck body between the electrode and the ground electrode.
    Type: Application
    Filed: September 8, 2022
    Publication date: January 5, 2023
    Applicant: Applied Materials, Inc.
    Inventor: Vijay D. Parkhe
  • Publication number: 20230002885
    Abstract: Physical vapor deposition methods for reducing the particulates deposited on the substrate are disclosed. The pressure during sputtering can be increased to cause agglomeration of the particulates formed in the plasma. The agglomerated particulates can be moved to an outer portion of the process chamber prior to extinguishing the plasma so that the agglomerates fall harmlessly outside of the diameter of the substrate.
    Type: Application
    Filed: September 9, 2022
    Publication date: January 5, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Halbert Chong, Lei Zhou, Adolph Miller Allen, Vaibhav Soni, Kishor Kalathiparambil, Vanessa Faune, Song-Moon Suh
  • Publication number: 20230005945
    Abstract: Methods of forming memory structures are discussed. Specifically, methods of forming 3D NAND devices are discussed. Some embodiments form memory structures with a metal nitride barrier layer, an ?-tungsten layer, and a bulk metal material. The barrier layer comprises a TiXN or TaXN material, where X comprises a metal selected from one or more of aluminum (Al), silicon (Si), tungsten (W), lanthanum (La), yttrium (Yt), strontium (Sr), or magnesium (Mg).
    Type: Application
    Filed: September 9, 2022
    Publication date: January 5, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Jacqueline S. Wrench, Yixiong Yang, Yong Wu, Wei V. Tang, Srinivas Gandikota, Yongjing Lin, Karla M Bernal Ramos, Shih Chung Chen
  • Publication number: 20230002890
    Abstract: Embodiments of the disclosure relate to methods for depositing blocking layers. Some embodiments utilize blocking compounds comprising more than one reactive moiety on a substrate with multiple metallic materials. Some embodiments utilize fluorinated blocking compounds to improve the stability of the blocking layer during subsequent plasma-assisted selective deposition processes.
    Type: Application
    Filed: July 2, 2021
    Publication date: January 5, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Mark Saly, Bhaskar Jyoti Bhuyan
  • Publication number: 20230005783
    Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region fluidly coupled with a plurality of processing regions. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a plurality of substrate supports disposed within the transfer region. The systems may also include a transfer apparatus having a central hub including a first shaft and a second shaft counter-rotatable with the first shaft. The transfer apparatus may include an eccentric hub extending at least partially through the central hub, and which is radially offset from a central axis of the central hub. The transfer apparatus may also include an end effector coupled with the eccentric hub. The end effector may include a plurality of arms having a number of arms equal to the number of substrate supports of the plurality of substrate supports.
    Type: Application
    Filed: September 8, 2022
    Publication date: January 5, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Jason M. Schaller, Luke Bonecutter, Charles T. Carlson, Rajkumar Thanu, Karuppasamy Muthukamatchi, Jeff Hudgens, Benjamin Riordon
  • Patent number: 11545354
    Abstract: Exemplary processing methods may include flowing a first deposition precursor into a substrate processing region to form a first portion of an initial compound layer. The first deposition precursor may include an aldehyde reactive group. The methods may include removing a first deposition effluent including the first deposition precursor from the substrate processing region. The methods may include flowing a second deposition precursor into the substrate processing region. The second deposition precursor may include an amine reactive group, and the amine reactive group may react with the aldehyde reactive group to form a second portion of the initial compound layer. The methods may include removing a second deposition effluent including the second deposition precursor from the substrate processing region. The methods may include annealing the initial compound layer to form an annealed carbon-containing material on the surface of the substrate.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: January 3, 2023
    Assignees: Applied Materials, Inc., National University of Singapore
    Inventors: Bhaskar Bhuyan, Zeqing Shen, Bo Qi, Abhijit Basu Mallick, Xinke Wang, Mark Saly
  • Patent number: 11542595
    Abstract: A physical vapor deposition (PVD) chamber and a method of operation thereof are disclosed. Chambers and methods are described that provide a chamber comprising an upper shield with two holes that are positioned to permit alternate sputtering from two targets.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: January 3, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Wen Xiao, Vibhu Jindal, Sanjay Bhat
  • Patent number: 11545375
    Abstract: A system and method of heating a workpiece to a desired temperature is disclosed. This system and method consider the physical limitations of the temperature device, such as time lag, temperature offset, and calibration, in creating a hybrid approach that heats the workpiece more efficiently. First, the workpiece is heated using open loop control to heat the workpiece to a threshold temperature. After the threshold temperature is reach, a closed loop maintenance mode is utilized. In certain embodiments, an open loop maintenance mode is employed between the open loop warmup mode and the closed loop maintenance mode. Additionally, a method of calibrating a pyrometer using a contact thermocouple is also disclosed.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: January 3, 2023
    Assignee: Applied Materials, Inc.
    Inventors: James D. Strassner, Bradley M. Pomerleau, D. Jeffrey Lischer, Dawei Sun, Michael Paul Rohrer
  • Patent number: 11545376
    Abstract: Embodiments of the present disclosure relate to a method and an apparatus for monitoring plasma behavior inside a plasma processing chamber. In one example, a method for monitoring plasma behavior includes acquiring at least one image of a plasma, and determining a plasma parameter based on the at least one image.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: January 3, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Sidharth Bhatia, Edward P. Hammond, IV, Bhaskar Kumar, Anup Kumar Singh, Vivek Bharat Shah, Ganesh Balasubramanian
  • Patent number: 11545371
    Abstract: In a chemical mechanical polishing system, a platen shield cleaning assembly is installed on a rotatable platen in a gap between the rotatable platen and a platen shield. The assembly includes a sponge holder attached to the platen and a sponge. The sponge is held by the sponge holder such that an outer surface of the sponge is pressed against an inner surface of the platen shield.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: January 3, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Shantanu Rajiv Gadgil, Sumit Subhash Patankar, Nathan Arron Davis, Allen L. D'Ambra
  • Patent number: 11545346
    Abstract: Capacitive sensors and capacitive sensing data integration for plasma chamber condition monitoring are described. In an example, a plasma chamber monitoring system includes a plurality of capacitive sensors, a capacitance digital converter, and an applied process server coupled to the capacitance digital converter, the applied process server including a system software. The capacitance digital converter includes an isolation interface coupled to the plurality of capacitive sensors, a power supply coupled to the isolation interface, a field-programmable gate-array firmware coupled to the isolation interface, and an application-specific integrated circuit coupled to the field-programmable gate-array firmware.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: January 3, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Yaoling Pan, Patrick John Tae, Michael D. Willwerth, Leonard Tedeschi, Kiyki-Shiy N. Shang, Mikhail V. Taraboukhine, Charles R. Hardy, Sivasankar Nagarajan
  • Patent number: 11545368
    Abstract: A method of processing and passivating an implanted workpiece is disclosed, wherein, after passivation, the fugitive emissions of the workpiece are reduced to acceptably low levels. This may be especially beneficial when phosphorus, arsine, germane or another toxic species is the dopant being implanted into the workpiece. In one embodiment, a sputtering process is performed after the implantation process. This sputtering process is used to sputter the dopant at the surface of the workpiece, effectively lowering the dopant concentration at the top surface of the workpiece. In another embodiment, a chemical etching process is performed to lower the dopant concentration at the top surface. After this sputtering or chemical etching process, a traditional passivation process can be performed.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: January 3, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Cuiyang Wang, Timothy J. Miller, Jun Seok Lee, Il-Woong Koo, Deven Raj Mittal, Peter G. Ryan, Jr.
  • Patent number: 11543296
    Abstract: A method may include heating a substrate in a first chamber to a platen temperature, the heating comprising heating the substrate on a platen; measuring the platen temperature in the first chamber using a contact temperature measurement; transferring the substrate to a second chamber after the heating; and measuring a voltage decay after transferring the substrate to the second chamber, using an optical pyrometer to measure pyrometer voltage as a function of time.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: January 3, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Eric D. Wilson, Steven Anella, D. Jeffrey Lischer, James McLane, Bradley M. Pomerleau, Dawei Sun
  • Patent number: 11542594
    Abstract: An advanced sputter target is disclosed. The advanced sputter target comprises two components, a porous carrier, and a metal material disposed within that porous carrier. The porous carrier is designed to be a high porosity, open cell structure such that molten material may flow through the carrier. The porous carrier also provides structural support for the metal material. The cell sizes of the porous carrier are dimensioned such that the capillary action and surface tension prohibits the metal material from spilling, dripping, or otherwise exiting the porous carrier. In some embodiments, the porous carrier is an open cell foam, a weave of strands or stacked meshes.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: January 3, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Graham Wright, Klaus Becker
  • Publication number: 20220415657
    Abstract: Disclosed herein are methods for forming a buried layer using a low-temperature ion implant. In some embodiments a method may include providing an opening through a mask, wherein the mask is formed directly atop a substrate, and forming a buried layer in the substrate by performing a low-temperature ion implant through the opening of the mask. The method may further include forming an oxide layer over the substrate including over the buried layer.
    Type: Application
    Filed: June 29, 2021
    Publication date: December 29, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Qintao Zhang, Samphy Hong, Wei Zou, Judy Campbell Soukup
  • Publication number: 20220415636
    Abstract: A physical vapor deposition processing chamber is described. The processing chamber includes a target backing plate in a top portion of the processing chamber, a substrate support in a bottom portion of the processing chamber, a deposition ring positioned at an outer periphery of the substrate support and a shield. The substrate support has a support surface spaced a distance from the target backing plate to form a process cavity. The shield forms an outer bound of the process cavity. In-chamber cleaning methods are also described. In an embodiment, the method includes closing a bottom gas flow path of a processing chamber to a process cavity, flowing an inert gas from the bottom gas flow path, flowing a reactant into the process cavity through an opening in the shield, and evacuating the reaction gas from the process cavity.
    Type: Application
    Filed: June 29, 2021
    Publication date: December 29, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Jothilingam Ramalingam, Yong Cao, Ilya Lavitsky, Keith A. Miller, Tza-Jing Gung, Xianmin Tang, Shane Lavan, Randy D. Schmieding, John C. Forster, Kirankumar Neelasandra Savandaiah