Patents Assigned to Applied Material
  • Publication number: 20230011261
    Abstract: Exemplary substrate support assemblies may include an electrostatic chuck body defining a substrate support surface that defines a substrate seat. The substrate support assemblies may include a support stem coupled with the electrostatic chuck body. The substrate support assemblies may include an upper heater embedded within the electrostatic chuck body. The upper heater may include a center heater zone and one or more annular heater zones that are concentric with the center heating zone. The substrate support assemblies may include a lower heater embedded within the electrostatic chuck body at a position below the upper heater. The lower heater may include a plurality of arcuate heater zones.
    Type: Application
    Filed: July 9, 2021
    Publication date: January 12, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Jian Li, Edward P. Hammond, Vidyadharan Srinivasamurthy, Juan Carlos Rocha-Alvarez
  • Publication number: 20230010978
    Abstract: Exemplary etching methods may include flowing an oxygen-containing precursor into a processing region of a semiconductor processing chamber. The methods may include contacting a substrate housed in the processing region with the oxygen-containing precursor. The substrate may include an exposed region of a transition metal nitride and an exposed region of a metal. The contacting may form an oxidized portion of the transition metal nitride and an oxidized portion of the metal. The methods may include forming a plasma of a fluorine-containing precursor and a hydrogen-containing precursor to produce fluorine-containing plasma effluents. The methods may include removing the oxidized portion of the transition metal nitride to expose a non-oxidized portion of the transition metal nitride. The methods may include forming a plasma of a chlorine-containing precursor to produce chlorine-containing plasma effluents. The methods may include removing the non-oxidized portion of the transition metal nitride.
    Type: Application
    Filed: July 12, 2021
    Publication date: January 12, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Baiwei Wang, Xiaolin C. Chen, Rohan Puligoru Reddy, Oliver Jan, Zhenjiang Cui, Anchuan Wang
  • Publication number: 20230008922
    Abstract: Exemplary substrate support assemblies may include a chuck body defining a substrate support surface. The substrate support surface may define a plurality of protrusions that extend upward from the substrate support surface. The substrate support surface may define an annular groove and/or ridge. A subset of the plurality of protrusions may be disposed within the annular groove and/or ridge. The substrate support assemblies may include a support stem coupled with the chuck body.
    Type: Application
    Filed: July 9, 2021
    Publication date: January 12, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Saketh Pemmasani, Akshay Dhanakshirur, Mayur Govind Kulkarni, Madhu Santosh Kumar Mutyala, Hang Yu, Deenesh Padhi
  • Publication number: 20230008986
    Abstract: Gas injector with a vacuum channel having an inlet opening in the front face and an outlet opening in the back face of the injector are described. The vacuum channel comprises a first leg extending a first length from the inlet opening in the front face at a first angle relative to the front face and a second leg extending a second length from the first leg to the outlet opening in the back face at a second angle relative to the front face. Processing chambers and methods of use comprising a plurality of processing regions bounded around an outer peripheral edge by one or more vacuum channel. A first processing region has a first vacuum channel with a first outer diameter and a second processing region has a second vacuum channel with a second outer diameter, the first outer diameter being less than the second outer diameter.
    Type: Application
    Filed: July 11, 2022
    Publication date: January 12, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Prahallad Iyengar, Sanjeev Baluja, Kartik Shah, Chaowei Wang, Janisht Golcha, Eric J. Hoffmann, Joseph AuBuchon, Ashutosh Agarwal, Lin Sun, Cong Trinh
  • Publication number: 20230009222
    Abstract: A method for controlling noise on an electronic device may include determining that a measured characteristic, associated with an antenna in a first configuration and included on the electronic device, violates a predetermined threshold. The method may also include identifying an aggressor in a second configuration, which may be a component on the electronic device. The aggressor may emit electromagnetic (EM) radiation that causes the measured characteristic to violate the predetermined threshold. One or more stimuli may be determined based on the first and/or second configurations that would cause the measured characteristic to no longer violate the predetermined threshold. One or more stimuli may be applied to the antenna and/or the aggressor, causing the measured characteristic to no longer violate the predetermined threshold.
    Type: Application
    Filed: July 8, 2022
    Publication date: January 12, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Mudit Sunilkumar Khasgiwala, Subramani Kengeri
  • Publication number: 20230011938
    Abstract: Exemplary semiconductor processing chambers may include a chamber body. The chambers may include a substrate support disposed within the chamber body. The substrate support may define a substrate support surface. The chambers may include a showerhead positioned supported atop the chamber body. The substrate support and a bottom surface of the showerhead may at least partially define a processing region within the semiconductor processing chamber. The showerhead may define a plurality of apertures through the showerhead. The bottom surface of the showerhead may define an annular groove or ridge that is positioned directly above at least a portion of the substrate support.
    Type: Application
    Filed: July 9, 2021
    Publication date: January 12, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Saketh Pemmasani, Daemian Raj Benjamin Raj, Xiaopu Li, Akshay Dhanakshirur, Mayur Govind Kulkarni, Madhu Santosh Kumar Mutyala, Deenesh Padhi, Hang Yu
  • Publication number: 20230008695
    Abstract: Exemplary integrated cluster tools may include a factory interface including a first transfer robot. The tools may include a wet clean system coupled with the factory interface at a first side of the wet clean system. The tools may include a load lock chamber coupled with the wet clean system at a second side of the wet clean system opposite the first side of the wet clean system. The tools may include a first transfer chamber coupled with the load lock chamber. The first transfer chamber may include a second transfer robot. The tools may include a dry etch chamber coupled with the first transfer chamber. The tools may include a second transfer chamber coupled with the first transfer chamber. The second transfer chamber may include a third transfer robot. The tools may include a process chamber coupled with the second transfer chamber.
    Type: Application
    Filed: July 7, 2022
    Publication date: January 12, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Brian K. Kirkpatrick, Uday Mitra
  • Publication number: 20230010499
    Abstract: Exemplary integrated cluster tools may include a factory interface including a first transfer robot. The tools may include a wet clean system coupled with the factory interface at a first side of the wet clean system. The tools may include a load lock chamber coupled with the wet clean system at a second side of the wet clean system opposite the first side of the wet clean system. The tools may include a first transfer chamber coupled with the load lock chamber. The first transfer chamber may include a second transfer robot. The tools may include a thermal treatment chamber coupled with the first transfer chamber. The tools may include a second transfer chamber coupled with the first transfer chamber. The second transfer chamber may include a third transfer robot. The tools may include a metal deposition chamber coupled with the second transfer chamber.
    Type: Application
    Filed: July 7, 2022
    Publication date: January 12, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Brian K. Kirkpatrick, Steven C. H. Hung, Malcolm J. Bevan
  • Patent number: 11552082
    Abstract: Memory devices and methods of forming memory devices are described. The memory devices comprise two work-function metal layers, where one work-function layer has a lower work-function than the other work-function layer. The low work-function layer may reduce gate-induced drain leakage current losses. Methods of forming memory devices are also described.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: January 10, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Sung-Kwan Kang, Gill Yong Lee, Sang Ho Yu, Shih Chung Chen, Jeffrey W. Anthis
  • Patent number: 11551904
    Abstract: A system and method that allows higher energy implants to be performed, wherein the peak concentration depth is shallower than would otherwise occur is disclosed. The system comprises an ion source, an accelerator, a platen and a platen orientation motor that allows large tilt angles. The system may be capable of performing implants of hydrogen ions at an implant energy of up to 5 MeV. By tilting the workpiece during an implant, the system can be used to perform implants that are typically performed at implant energies that are less than the minimum implant energy allowed by the system. Additionally, the resistivity profile of the workpiece after thermal treatment is similar to that achieved using a lower energy implant. In certain embodiments, the peak concentration depth may be reduced by 3 ?m or more using larger tilt angles.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: January 10, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Venkataramana R. Chavva, KyuHa Shim, Hans Gossmann, Edwin Arevalo, Scott Falk, Rajesh Prasad
  • Patent number: 11552244
    Abstract: Embodiments of magnetic tunnel junction (MTJ) structures discussed herein employ seed layers of one or more layer of chromium (Cr), NiCr, NiFeCr, RuCr, IrCr, or CoCr, or combinations thereof. These seed layers are used in combination with one or more pinning layers, a first pinning layer in contact with the seed layer can contain a single layer of cobalt, or can contain cobalt in combination with bilayers of cobalt and platinum (Pt), iridium (Ir), nickel (Ni), or palladium (Pd), The second pinning layer can be the same composition and configuration as the first, or can be of a different composition or configuration. The MTJ stacks discussed herein maintain desirable magnetic properties subsequent to high temperature annealing.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: January 10, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Lin Xue, Chi Hong Ching, Rongjun Wang, Mahendra Pakala
  • Patent number: 11551917
    Abstract: One or more embodiments described herein relate to abatement systems for reducing Br2 and Cl2 in semiconductor processes. In embodiments described herein, semiconductor etch processes are performed within process chambers. Thereafter, fluorinated greenhouse gases (F-GHGs), HBr, and Cl2 gases exit the process chamber and enter a plasma reactor. Reagent gases are delivered from a reagent gas delivery apparatus to the plasma reactor to mix with the process gases. Radio frequency (RF) power is applied to the plasma reactor, which adds energy and “excites” the gases within the process chamber. When HBr is energized, it forms Br2. Br2 and Cl2 are corrosive and toxic. However, the addition of H2O in the plasma reactor quenches the Br2 and Cl2 emissions, as the H atoms recombine with the Br atoms and the Cl atoms to form HBr and HCl. HBr and HCl are readily water-soluble and removed through a wet scrubber.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: January 10, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Joseph A. Van Gompel, James L'Heureux
  • Patent number: 11550224
    Abstract: Embodiments described herein relate to methods and apparatus for performing immersion field guided post exposure bake processes. Embodiments of apparatus described herein include a chamber body defining a processing volume. Electrodes may be disposed adjacent the process volume and process fluid is provided to the process volume via a plurality of fluid conduits to facilitate immersion field guided post exposure bake processes. A post process chamber for rinsing, developing, and drying a substrate is also provided.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: January 10, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Kyle M. Hanson, Gregory J. Wilson, Viachslav Babayan
  • Patent number: 11551965
    Abstract: Implementations of the present disclosure provide a process kit for an electrostatic chuck. In one implementation, a substrate support assembly is provided. The substrate support assembly includes an electrostatic chuck having a first recess formed in an upper portion of the electrostatic chuck. A process kit surrounds the electrostatic chuck. The process kit includes an inner ring and an outer ring disposed radially outward of the inner ring. The outer ring includes a second recess formed in an upper portion of the upper ring. The inner ring is positioned within and is supported by the first recess and the second recess. An upper surface of the inner ring and an upper surface of the outer ring are co-planar.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: January 10, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Andrew Nguyen, Xue Chang, Shahid Rauf, Jason A. Kenney
  • Patent number: 11552265
    Abstract: Devices comprising a resistance-switching polymer film are described. Also described are methods of making the devices comprising the resistance-switching polymer film.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: January 10, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Xinke Wang, John Sudijono, Xiao Gong
  • Patent number: 11552283
    Abstract: A method of coating a flexible substrate in a roll-to-roll deposition system is described. The method includes unwinding the flexible substrate from an unwinding roll, the flexible substrate having a first coating on a first main side thereof; measuring a lateral positioning of the first coating while guiding the flexible substrate to a coating drum; adjusting a lateral position of the flexible substrate on the coating drum depending on the measured lateral positioning of the first coating; and depositing a second coating on the flexible substrate, particularly on a second main side of the flexible substrate opposite the first main side. Further described is a vacuum deposition apparatus for conducting the methods described herein.
    Type: Grant
    Filed: August 4, 2020
    Date of Patent: January 10, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Andreas Sauer, Thomas Deppisch, Mathew Dean Allison
  • Patent number: 11551951
    Abstract: A method for controlling a temperature of a substrate support assembly is provided. A first direct current (DC) power is supplied to a heating element embedded in a zone of the substrate support assembly included in a processing chamber. A voltage is measured across the heating element. Similarly, a current is measured through the heating element. A temperature of the zone of the substrate support assembly is determined based on the voltage across the heating element and the current through the heating element. A temperature difference between the determined temperature of the zone and a target temperature for the zone is determined. A second DC power to deliver to the heating element is determined to achieve the target temperature based at least in part on the temperature difference. The second DC power is supplied to the heating element to cause the temperature of the zone to be modified to the target temperature.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: January 10, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Paul Zachary Wirth, Kiyki-Shiy Shang, Mikhail Taraboukhine
  • Patent number: 11550222
    Abstract: Embodiments of the present disclosure generally relate to a multilayer stack used as a mask in extreme ultraviolet (EUV) lithography and methods for forming a multilayer stack. In one embodiment, the method includes forming a carbon layer over a film stack, forming a metal rich oxide layer on the carbon layer by a physical vapor deposition (PVD) process, forming a metal oxide photoresist layer on the metal rich oxide layer, and patterning the metal oxide photoresist layer. The metal oxide photoresist layer is different from the metal rich oxide layer and is formed by a process different from the PVD process. The metal rich oxide layer formed by the PVD process improves adhesion of the metal oxide photoresist layer and increases the secondary electrons during EUV lithography, which leads to decreased EUV dose energies.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: January 10, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Tejinder Singh, Lifan Yan, Abhijit B. Mallick, Daniel Lee Diehl, Ho-yung Hwang, Jothilingam Ramalingam
  • Patent number: 11552177
    Abstract: Metal gate stacks and integrated methods of forming metal gate stacks are disclosed. Some embodiments comprise NbN as a PMOS work function material at a thickness in a range of greater than or equal to 5 ? to less than or equal to 50 ?. The PMOS work function material comprising NbN has an effective work function of greater than or equal to 4.75 eV. Some embodiments comprise HfO2 as a high-? metal oxide layer. Some embodiments provide improved PMOS bandedge performance evidenced by improved flatband voltage. Some embodiments exclude transition metal niobium nitride materials as work function materials.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: January 10, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Srinivas Gandikota, Steven C. H. Hung, Mandyam Sriram, Jacqueline S. Wrench, Yixiong Yang, Yong Yang
  • Patent number: 11549181
    Abstract: Methods for the formation of films comprising Si, C, O and N are provided. Certain methods involve sequential exposures of a hydroxide terminated substrate surface to a silicon precursor and an alcohol-amine to form a film with hydroxide terminations. Certain methods involved sequential exposures of hydroxide terminated substrate surface to a silicon precursor and a diamine to form a film with an amine terminated surface, followed by sequential exposures to a silicon precursor and a diol to form a film with a hydroxide terminated surface.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: January 10, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Bhaskar Jyoti Bhuyan, Mark Saly