Patents Assigned to Applied Material
  • Patent number: 10943803
    Abstract: Methods and gas flow control assemblies configured to deliver gas to process chamber zones in desired flow ratios. In some embodiments, assemblies include one or more MFCs and a back pressure controller (BPC). Assemblies includes a controller, a process gas supply, a distribution manifold, a pressure sensor coupled to the distribution manifold and configured to sense back pressure of the distribution manifold, a process chamber, a one or more mass flow controllers connected between the distribution manifold and process chamber to control gas flow there between, and a back pressure controller provided in fluid parallel relationship to the one or more mass flow controllers, wherein precise flow ratio control is achieved. Alternate embodiments include an upstream pressure controller configured to control flow of carrier gas to control back pressure. Further methods and assemblies for controlling zonal gas flow ratios are described, as are other aspects.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: March 9, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Kevin Brashear, Ashley M. Okada, Dennis L. Demars, Zhiyuan Ye, Jaidev Rajaram, Marcel E. Josephson
  • Patent number: 10944050
    Abstract: Embodiments of magnetic tunnel junction (MTJ) structures discussed herein employ seed layers of one or more layer of chromium (Cr), NiCr, NiFeCr, RuCr, IrCr, or CoCr, or combinations thereof. These seed layers are used in combination with one or more pinning layers, a first pinning layer in contact with the seed layer can contain a single layer of cobalt, or can contain cobalt in combination with bilayers of cobalt and platinum (Pt), iridium (Ir), nickel (Ni), or palladium (Pd), The second pinning layer can be the same composition and configuration as the first, or can be of a different composition or configuration. The MTJ stacks discussed herein maintain desirable magnetic properties subsequent to high temperature annealing.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: March 9, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Lin Xue, Chi Hong Ching, Rongjun Wang, Mahendra Pakala
  • Patent number: 10942507
    Abstract: A method includes determining, by a processing device, a first eco-efficiency characterization associated with a first design of manufacturing equipment based on one or more of water eco-efficiency characterization, emissions eco-efficiency characterization, or electrical energy eco-efficiency characterization. The water eco-efficiency characterization, the emissions eco-efficiency characterization, the electrical energy eco-efficiency characterization, and the first eco-efficiency characterization are associated with an amount of environmental impact generated by the manufacturing equipment per unit product produced by the manufacturing equipment. The method further includes comparing the first eco-efficiency characterization to a second eco-efficiency characterization that is associated with a second design of the manufacturing equipment.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: March 9, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Mark Robert Denome, Vijayakumar Venugopal, Ashish Kumar, Vijai Thangamany, Somil Kapdia, Ching-Hong Hsieh
  • Patent number: 10943834
    Abstract: Processing methods may be performed to expose a contact region on a semiconductor substrate. The methods may include selectively removing a first region of a silicon material between source/drain regions of a semiconductor substrate to expose a first region of oxide material. The methods may include forming a liner over the first region of oxide material and contacting second regions of the silicon material proximate the source/drain regions of the semiconductor substrate. The methods may also include selectively removing the second regions of the silicon material proximate the source/drain regions of the semiconductor substrate to expose a second region of the oxide material. The methods may further include selectively removing the second region of the oxide material from a surface of a contact in the semiconductor structure.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: March 9, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Sankuei Lin, Ajay Bhatnagar, Nitin Ingle
  • Patent number: 10940641
    Abstract: An additive manufacturing apparatus includes a platform, a dispenser to dispense a plurality of layers of feed material on a top surface of the platform, and an energy delivery system. The energy delivery system has one or more light sources configured to emit a first light beam and a second light beam, and one or more reflective members each having reflective facets to redirect the first light beam or the second light beam toward an uppermost layer of feed material to deliver energy to the uppermost layer. The one or more reflective members are each rotatable such that motion of each sequential facet of the reflective facets of each of the one or more reflective members sweeps the first light beam along a first path on the uppermost layer or sweeps the second light beam along a second path on the uppermost layer.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: March 9, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey L. Franklin, Hou T. Ng, Nag B. Patibandla
  • Patent number: 10943788
    Abstract: Examples of the present disclosure provide a load that includes a chamber body assembly. The chamber body assembly defines a first chamber volume and a second chamber volume fluidly isolated from one another. The first chamber volume and second chamber volume are selectively connectable to two environments through two sets of openings configured for substrate transferring. A third chamber volume is selectively connectable to the two environments through two sets of openings. A remote plasma source couples a processing gas source to the second chamber volume. A cooled substrate support assembly, includes a plurality of cooling channels, bounds a portion of the first chamber volume. A heated substrate support assembly can support a substrate. A gas distribution assembly, includes a showerhead, is disposed in the second chamber volume and is coupled to the remote plasma source. The showerhead can provide a processing gas to the second chamber volume.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: March 9, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Martin Jeffrey Salinas, Paul B. Reuter, Andrew Nguyen, Jared Ahmad Lee
  • Patent number: 10943805
    Abstract: Electronic device manufacturing apparatus and robot apparatus are described. The apparatus are configured to efficiently pick and place substrates wherein the robot apparatus includes an upper arm and three blades B1, B2, B3 that are independently rotatable. The three blades are configured to service a first dual load lock and second dual load lock wherein each dual load lock includes a different pitch. In some embodiments, a first pitch P1 is smaller than a second pitch P2. Blades B2 and B3 (or optionally blades B1 and B2) can service the first dual load lock with Pitch P1 and blades B1 and B3 can service the second dual load lock including the second pitch P2. Methods of operating the electronic device manufacturing apparatus and the robot apparatus are provided, as are numerous other aspects.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: March 9, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey C. Hudgens, Michael R. Rice, Karuppasamy Muthukamatchi, Nir Merry
  • Patent number: 10941303
    Abstract: Embodiments of the disclosure provide a chamber component for use in a plasma processing chamber apparatus. The chamber component may include a coating layer that provides a fluorine-rich surface. In one embodiment, a chamber component, for use in a plasma processing apparatus, includes a body having an outer layer comprising yttria having a coating layer formed thereon, wherein the coating layer comprises a yttrium fluoride containing material.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: March 9, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Mats Larsson, Yogita Pareek, Jianqi Wang, Kevin A. Papke
  • Publication number: 20210066592
    Abstract: Methods of depositing a metal-organic oxide film by exposing a substrate surface to a metal-organic precursor and an oxidant are described. The metal-organic oxide film has the general formula MOxCy, wherein M comprises one or more of a transition metal, a lanthanide, or a boron group element, x is a whole number in a range of 1 to 6, and y is a number in a range of greater than 0 to 0.5.
    Type: Application
    Filed: August 24, 2020
    Publication date: March 4, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Feng Q. Liu, Nasrin Kazem, Jeffrey W. Anthis, Ghazal Saheli, David Thompson
  • Patent number: 10937646
    Abstract: A method of forming an electrically insulating barrier between a source contact and a drain contact of a transistor device including an electrically insulating layer disposed atop a semi-conductive layer, and an electrically conductive layer disposed atop the electrically insulating layer, the source contact and the drain contact extending from the electrically conductive layer through the electrically insulating layer to the semi-conductive layer, the method including disposing a hardmask layer atop the electrically conductive layer, disposing a photoresist layer atop the hardmask layer, performing a photolithography process to form a trench in the hardmask layer to expose an underlying portion of the electrically conductive layer spanning between the source contact and the drain contact, and performing an ion implantation process, wherein an ion beam formed of ionized oxygen atoms is directed into the trench to oxidize the exposed portion of the electrically conductive layer.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: March 2, 2021
    Assignee: Applied Materials, Inc.
    Inventor: Aseem K. Srivastava
  • Patent number: 10935799
    Abstract: A method of forming an optical grating component. The method may include providing a substrate, the substrate comprising an underlayer and a hard mask layer, disposed on the underlayer. The method may include patterning the hard mask layer to define a grating field and etching the underlayer within the grating field to define a variable height of the underlayer along a first direction, the first direction being parallel to a plane of the substrate. The method may include forming an optical grating within the grating field using an angled ion etch, the optical grating comprising a plurality of angled structures, disposed at a non-zero angle of inclination with respect to a perpendicular to a plane of the substrate, wherein the plurality of angled structures define a variable depth along the first direction, based upon the variable height of the underlayer.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: March 2, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Rutger Meyer Timmerman Thijssen, Ludovic Godet, Morgan Evans, Joseph C. Olson
  • Patent number: 10937706
    Abstract: A first defect map representing defects in a first semiconductor specimen in an attribute hyperspace may be received. Scores may be assigned to classified defects in the first defect map where an assigned score of a given defect of the classified defects in the first defect map is indicative of a number of defects within a threshold distance in the attribute hyperspace to the given defect in the first defect map that are classified to a same defect class as the given defect. A second defect map representing defects in a second semiconductor specimen in the attribute hyperspace may be received. Defects in the second defect map may be selected for review based on the scores assigned to the classified defects in the first defect map. The selected defects in the second defect map may be selected for classification.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: March 2, 2021
    Assignee: Applied Materials Israel Ltd.
    Inventors: Yotam Sofer, Ariel Hirszhorn
  • Patent number: 10937683
    Abstract: Embodiments disclosed herein generally relate to a conveyor inspection system and a method of sorting a substrate. The conveyor inspection system includes a moveable conveyor and a rapid conveyor. The moveable conveyor is configured to transfer undesired substrates to the rapid conveyor. The method includes determining that the substrate is undesirable for entry into a modular inspection unit, transferring the substrate to a rapid conveyor in response to determining that the substrate is undesirable for entry into the modular inspection unit, and transporting the substrate on the rapid conveyor. The conveyor inspection system and method remove substrates from the test system upon first entering the test system, which reduces time wasted in analyzing undesired substrates that would be discarded.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: March 2, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Asaf Schlezinger, Markus J. Stopper
  • Patent number: 10937726
    Abstract: The present disclosure relates to semiconductor core assemblies and methods of forming the same. The semiconductor core assemblies described herein may be utilized to form semiconductor package assemblies, PCB assemblies, PCB spacer assemblies, chip carrier assemblies, intermediate carrier assemblies (e.g., for graphics cards), and the like. In one embodiment, a silicon substrate core is structured by direct laser patterning. One or more conductive interconnections are formed in the substrate core and one or more redistribution layers are formed on surfaces thereof. The silicon substrate core may thereafter be utilized as a core structure for a semiconductor package, PCB, PCB spacer, chip carrier, intermediate carrier, or the like.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: March 2, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Han-Wen Chen, Steven Verhaverbeke, Giback Park, Kyuil Cho, Kurtis Leschkies, Roman Gouk, Chintan Buch, Vincent DiCaprio
  • Patent number: 10934216
    Abstract: An article comprises a plasma resistant ceramic material comprising Y2O3 at a concentration of approximately 30 molar % to approximately 60 molar %, Er2O3 at a concentration of above 30 molar % to approximately 60 molar %, and at least one of ZrO2, Gd2O3 or SiO2 at a concentration of over 0 molar % to approximately 30 molar %.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: March 2, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Biraja P. Kanungo
  • Patent number: 10934620
    Abstract: Implementations described herein generally relate to an apparatus for forming flowable films. In one implementation, the apparatus is a processing chamber including a first RPS coupled to a lid of the processing chamber and a second RPS coupled to a side wall of the processing chamber. The first RPS is utilized for delivering deposition radicals into a processing region in the processing chamber and the second RPS is utilized for delivering cleaning radicals into the processing region. The processing chamber further includes a radical delivery ring disposed between a showerhead and a substrate support for delivering cleaning radicals from the second RPS into the processing region. Having separate RPSs for deposition and clean along with introducing radicals from the RPSs into the processing region using separate delivery channels minimizes cross contamination and cyclic change on the RPSs, leading to improved deposition rate drifting and particle performance.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: March 2, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Ying Ma, Daemian Raj, Jay D. Pinson, II, DongQing Li, Jingmei Liang, Yizhen Zhang
  • Patent number: 10937637
    Abstract: In one embodiment of the invention, a method for predicting a susceptor's service life in a processing chamber is disclosed. The method begins by creating virtual sensors in a processing chamber having a susceptor. The virtual sensors monitor one or more parameters on the susceptor and the age of the susceptor is tracked throughout the susceptor's life in the processing chamber with the virtual sensors.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: March 2, 2021
    Assignee: Applied Materials, Inc.
    Inventor: Ilias Iliopoulos
  • Patent number: 10935896
    Abstract: Disclosed are a cleaning solution mixing system, a tool and a method of operation thereof, including an ultrapure water source for providing ultrapure water; an ammonia filter for filtering ammonia in gas form; a hydrogen peroxide filter for filtering hydrogen peroxide in gas form; an ammonia re-gas membrane for dissolving the ammonia in the ultrapure water and forming ultra-dilute ammoniated water; a hydrogen peroxide re-gas membrane for dissolving the hydrogen peroxide in the ultrapure water and forming ultra-dilute hydrogenated water; and a mixer for forming an ultra-dilute cleaning solution by mixing the ultra-dilute ammoniated water and the ultra-dilute hydrogenated water.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: March 2, 2021
    Assignee: Applied Materials, Inc.
    Inventor: Abbas Rastegar
  • Patent number: 10933624
    Abstract: Embodiments described herein generally relate to an apparatus and methods for removing a glue residue from a photomask. The glue residue may be exposed when a pellicle is removed from the photomask. Before a new pellicle can be adhered to the photomask, the glue residue may be removed. To remove the glue residue, a laser beam may be projected through a lens and focused on a surface of the glue residue. The glue residue may be ablated from the photomask by the laser beam.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: March 2, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Banqiu Wu, Eli Dagan
  • Publication number: 20210059037
    Abstract: A method and apparatus for controlling RF plasma attributes is disclosed. Some embodiments of the disclosure provide RF sensors within processing chambers operable at high temperatures. Some embodiments provide methods of measuring RF plasma attributes using RF sensors within a processing chamber to provide feedback control for an RF generator.
    Type: Application
    Filed: August 19, 2020
    Publication date: February 25, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Zheng John Ye, Daemian Raj Benjamin Raj, Shailendra Srivastava, Nikhil Sudhindrarao Jorapur, Ndanka O. Mukuti, Dmitry A. Dzilno, Juan Carlos Rocha