Abstract: An apparatus for plasma processing a substrate is provided. The apparatus comprises a processing chamber, a substrate support disposed in the processing chamber, and a lid assembly coupled to the processing chamber. The lid assembly comprises a conductive gas distributor coupled to a power source. A tuning electrode may be disposed between the conductive gas distributor and the chamber body for adjusting a ground pathway of the plasma. A second tuning electrode may be coupled to the substrate support, and a bias electrode may also be coupled to the substrate support.
Type:
Grant
Filed:
November 13, 2018
Date of Patent:
February 2, 2021
Assignee:
Applied Materials, Inc.
Inventors:
Juan Carlos Rocha-Alvarez, Amit Kumar Bansal, Ganesh Balasubramanian, Jianhua Zhou, Ramprakash Sankarakrishnan, Mohamad A. Ayoub, Jian J. Chen
Abstract: A thermal management system comprising a fluid channel with a plurality of parallel first flow paths extending along a first level in a first thermal mass and a plurality of parallel second flow paths extending along a second level in a second thermal mass are described. Methods for controlling the temperature of a substrate or heater surface and fluid manifolds are also described.
Abstract: Embodiments of the present disclosure generally relate to apparatuses and systems for performing photolithography processes. More particularly, compact illumination tools for projecting an image onto a substrate are provided. In one embodiment, an illumination tool includes a microLED array including one or more microLEDs. Each microLED produces at least one light beam. The illumination tool also includes a beamsplitter adjacent the microLED array, a camera adjacent the beamsplitter, and a projection optics system adjacent the beamsplitter.
Type:
Grant
Filed:
March 2, 2018
Date of Patent:
February 2, 2021
Assignee:
Applied Materials, Inc.
Inventors:
Jang Fung Chen, Christopher Dennis Bencher
Abstract: Metal coordination complexes comprising a metal atom coordinated to at least one diazabutadiene ligand having a structure represented by: where each R is independently a C1-C13 alkyl or aryl group and each R? is independently H, C1-C10 alkyl or aryl group are described. Processing methods using the metal coordination complexes are also described.
Type:
Grant
Filed:
January 20, 2020
Date of Patent:
February 2, 2021
Assignee:
Applied Materials, Inc.
Inventors:
Benjamin Schmiege, Jeffrey W. Anthis, David Thompson
Abstract: Methods of forming SiCON films comprising sequential exposure to a silicon precursor and a mixture of alkanolamine and amine reactants and an optional plasma are described. Methods of forming a silicon-containing film comprising sequential exposure to a silicon precursor and an epoxide with an optional plasma exposure are also described.
Type:
Application
Filed:
October 12, 2020
Publication date:
January 28, 2021
Applicant:
Applied Materials, Inc.
Inventors:
Mark Saly, David Thompson, Thomas Knisley, Bhaskar Jyoti Bhuyan
Abstract: A method for producing a flexible device is described. The method includes providing a support substrate, coating the support substrate with an adhesive layer, providing a device having a microstructure on the adhesive layer, attaching a flexible substrate to the device, and removing the adhesive layer.
Abstract: Methods for seam-less gapfill comprising sequentially depositing a film with a seam, reducing the height of the film to remove the seam and repeating until a seam-less film is formed. Some embodiments include optional film doping and film treatment (e.g., ion implantation and annealing).
Abstract: Methods for forming a smooth ultra-thin flowable CVD film by using a surface treatment on a substrate surface before flowable CVD film deposition improves the uniformity and overall film smoothness. The flowable CVD film can be cured by any suitable curing process to form a smooth flowable CVD film.
Type:
Application
Filed:
July 15, 2020
Publication date:
January 28, 2021
Applicant:
Applied Materials, Inc.
Inventors:
Jinrui Guo, Jingmei Liang, Praket P. Jha, Li Zhang
Abstract: The present disclosure is directed to structures and processing for three-dimensional transistor devices. In some approaches, a method may include providing a plurality of fin structures formed from a substrate, the plurality of fin structures disposed subjacent to a hard mask layer, and directing angled ions at the plurality of fin structures. The angled ions may form a non-zero angle of incidence with respect to a perpendicular to a plane of the substrate, wherein the angled ions etch the plurality of fin structures to form a stack of isolated nanowires within the plurality of fin structures. The method may further include removing the hard mask layer, and forming a stopping layer over the stack of isolated nanowires.
Type:
Grant
Filed:
August 16, 2019
Date of Patent:
January 26, 2021
Assignee:
Applied Materials, Inc.
Inventors:
Anthony Renau, Min Gyu Sung, Sony Varghese, Morgan Evans, Naushad K. Variam, Tassie Andersen
Abstract: The present technology includes improved gas distribution designs for forming uniform plasmas during semiconductor processing operations or for treating the interior of semiconductor processing chambers. While conventional gas distribution assemblies may receive a specific reactant or reactant ratio which is then distributed into the plasma region, the presently described technology allows for improved control of the reactant input distribution. The technology allows for separate flows of reactants to different regions of the plasma to offset any irregularities observed in process uniformity. A first precursor may be delivered to the center of the plasma above the center of the substrate/pedestal while a second precursor may be delivered to an outer portion of the plasma above an outer portion of the substrate/pedestal. In so doing, a substrate residing on the pedestal may experience a more uniform etch or deposition profile across the entire surface.
Type:
Grant
Filed:
December 19, 2017
Date of Patent:
January 26, 2021
Assignee:
Applied Materials, Inc.
Inventors:
Saravjeet Singh, Kenneth D. Schatz, Alan Tso, Marlin Wijekoon, Dimitri Kioussis
Abstract: A method, system and computer readable medium for providing information about a region of a sample. The method includes (i) obtaining, by an imager, multiple images of the region; wherein the multiple images differ from each other by at least one parameter (ii) receiving or generating multiple reference images; (iii) generating multiple difference images that represent differences between the multiple images and the multiple reference images; (iv) calculating a set of region pixel attributes, (v) calculating a set of noise attributes, based on multiple sets of region pixels attributes of the multiple region pixels; and (vi) determining for each region pixel, whether the region pixel represents a defect based on a relationship between the set of noise attributes and the set of region pixel attributes of the pixel.
Abstract: A method of controlling polishing includes sweeping a sensor of an in-situ monitoring system across a substrate as a layer of the substrate undergoes polishing, generating from the in-situ monitoring system a sequence of signal values that depend on a thickness of the layer, detecting from the sequence of signal values, a time that the sensor traverses a leading edge of the substrate or a retaining ring and a time that the sensor traverses a trailing edge of the substrate or retaining ring; and for each signal value of at least some of the sequence of signal values, determining a position on the substrate for the signal value based on the time that the sensor traverses the leading edge and the time that the sensor traverses a trailing edge.
Abstract: Embodiments of the present disclosure include methods and apparatuses utilized to reduce residual film layers from a substrate periphery region, such as an edge or bevel of the substrate. Contamination of the substrate bevel, backside and substrate periphery region may be reduced after a plasma process. In one embodiment, an edge ring includes a base circular ring having an inner surface defining a center opening formed thereon and an outer surface defining a perimeter of the base circular ring. The base circular ring includes an upper body and a lower portion connected to the upper body. A step is formed at the inner surface of the base circular ring and above a first upper surface of the upper body. The step defines a pocket above the first upper surface of the upper body. A plurality of raised features formed on the first upper surface of the base circular ring.
Abstract: Apparatus and methods for processing a semiconductor wafer in which a sensor (e.g., a contact thermocouple) is positioned in the gas distribution assembly measures temperature and/or a film parameter before, during and/or after deposition are described.
Abstract: Exemplary systems according to embodiments of the present technology include a housing that defines a process chamber and a waveguide cavity. A first conductive plate is disposed within the housing. The system also includes a second conductive plate positioned within the housing and at least partially defining the waveguide cavity. The second conductive plate is vertically translatable within the housing to adjust a distance between the first conductive plate and the second conductive plate to affect modes of electromagnetic radiation propagating within the waveguide cavity. The systems also include one or more electronics sets that are configured to transmit the electromagnetic radiation into the waveguide cavity to produce plasma from at least one process gas delivered within the process chamber.
Type:
Grant
Filed:
August 9, 2019
Date of Patent:
January 26, 2021
Assignee:
Applied Materials, Inc.
Inventors:
Satoru Kobayashi, Hideo Sugai, Nikolai Kalnin, Soonam Park, Toan Tran, Dmitry Lubomirsky
Abstract: Embodiments described herein generally relate to apparatuses for processing a substrate. In one or more embodiments, a heater support kit includes a heater assembly contains a heater plate having an upper surface and a lower surface, a chuck ring disposed on at least a portion of the upper surface of the heater plate, a heater arm assembly contains a heater arm and supporting the heater assembly, and a heater support plate disposed between the heater plate and the heater arm and in contact with at least a portion of the lower surface of the heater plate.
Type:
Grant
Filed:
May 22, 2019
Date of Patent:
January 26, 2021
Assignee:
Applied Materials, Inc.
Inventors:
Tuan Anh Nguyen, Jeongmin Lee, Anjana M. Patel, Abdul Aziz Khaja
Abstract: A method for preparing a bonding component comprises mixing a first solution comprising an organofluorine monomer unit with a second solution comprising an organosilicon monomer unit to form, in-situ, a copolymer solution comprising a copolymer of an organofluorine polymer and an organosilicon polymer based on the organofluorine monomer unit and the organosilicon monomer unit. The method further comprises depositing the copolymer solution onto a body to form a film of the copolymer, and curing the film of the copolymer.
Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a method of dicing a semiconductor wafer having a plurality of integrated circuits involves forming a mask above the semiconductor wafer, the mask composed of a layer covering and protecting the integrated circuits. The mask is then patterned with a uniform rotating laser beam laser scribing process to provide a patterned mask with gaps, exposing regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then plasma etched through the gaps in the patterned mask to singulate the integrated circuits.
Type:
Grant
Filed:
August 14, 2019
Date of Patent:
January 26, 2021
Assignee:
Applied Materials, Inc.
Inventors:
Jungrae Park, Karthik Balakrishnan, James S. Papanu
Abstract: Plasma source assemblies comprising an RF hot electrode having a body and at least one return electrode spaced from the RF hot electrode to provide a gap in which a plasma can be formed. An RF feed is connected to the RF hot electrode at a distance from the inner peripheral end of the RF hot electrode that is less than or equal to about 25% of the length of the RF hot electrode.
Type:
Grant
Filed:
May 15, 2018
Date of Patent:
January 26, 2021
Assignee:
Applied Materials, Inc.
Inventors:
Kallol Bera, Anantha K. Subramani, John C. Forster, Philip A. Kraus, Farzad Houshmand, Hanhong Chen
Abstract: Embodiments provide techniques for compressing sensor data collected within a manufacturing environment. One embodiment monitors a plurality of runs of a recipe for fabricating one or more semiconductor devices within a manufacturing environment to collect runtime data from a plurality of sensors within the manufacturing environment. The collected runtime data is compressed by generating, for each of the plurality of sensors and for each of the plurality of runs, a respective representation of the corresponding runtime data that describes a shape of the corresponding runtime data and a magnitude of the corresponding runtime data. A query specifying one or more runtime data attributes is received and executed against the compressed runtime data to generate query results, by comparing the one or more runtime data attributes to at least one of the generated representations of runtime data.
Type:
Grant
Filed:
May 31, 2017
Date of Patent:
January 26, 2021
Assignee:
Applied Materials, Inc.
Inventors:
Jimmy Iskandar, Michael D. Armacost, Heng Hao