Patents Assigned to Applied Material
  • Patent number: 10770272
    Abstract: Implementations described herein provide for thermal substrate processing apparatus including two thermal process chambers, each defining a process volume, and a substrate support disposed within each process volume. One or more remote plasma sources may be in fluid communication with the process volumes and the remote plasma sources may be configured to deliver a plasma to the process volumes. Various arrangements of remote plasma sources and chambers are described.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: September 8, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Lara Hawrylchak, Matthew D. Scotney-Castle, Norman L. Tam, Matthew Spuller, Kong Lung Samuel Chan, Dongming Iu
  • Patent number: 10770300
    Abstract: Methods and apparatus to selectively deposit metal films (e.g., titanium films) are described. One of the precursors is energized to form ions and radicals of the precursor. The precursors flow through separate channels of a dual channel gas distribution assembly to react in a processing region above a substrate.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: September 8, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Takashi Kuratomi, Avgerinos V. Gelatos, I-Cheng Chen, Faruk Gungor
  • Patent number: 10766117
    Abstract: A retaining ring can be shaped by machining or lapping the bottom surface of the ring to form a shaped profile in the bottom surface. The bottom surface of the retaining ring can include flat, sloped and curved portions. The lapping can be performed using a machine that dedicated for use in lapping the bottom surface of retaining rings. During the lapping the ring can be permitted to rotate freely about an axis of the ring. The bottom surface of the retaining ring can have curved or flat portions.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: September 8, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Hung Chih Chen, Steven M. Zuniga, Charles C. Garretson, Douglas R. McAllister, Jian Lin, Stacy Meyer, Sidney P. Huey, Jeonghoon Oh, Trung T. Doan, Jeffrey P. Schmidt, Martin S. Wohlert, Kerry F. Hughes, James C. Wang, Danny Cam Toan Lu, Romain Beau De Lamenie, Venkata R. Balagani, Aden Martin Allen, Michael Jon Fong
  • Patent number: 10770346
    Abstract: Exemplary methods for removing cobalt material may include flowing a chlorine-containing precursor into a processing region of a semiconductor processing chamber. The methods may include forming a plasma of the chlorine-containing precursor to produce plasma effluents. The methods may also include contacting an exposed region of cobalt with the plasma effluents. The exposed region of cobalt may include an overhang of cobalt on a trench defined on a substrate. The plasma effluents may produce cobalt chloride at the overhang of cobalt. The methods may include flowing a nitrogen-containing precursor into the processing region of the semiconductor processing chamber. The methods may further include contacting the cobalt chloride with the nitrogen-containing precursor. The methods may also include recessing the overhang of cobalt.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: September 8, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Xikun Wang, Jianxin Lei, Nitin Ingle, Roey Shaviv
  • Patent number: 10768611
    Abstract: A method and system for scheduling tasks using a counter constraint. A method may include identifying multiple tasks to be performed, receiving dependency data indicating that scheduling of at least one task is dependent on whether a counter satisfies a threshold in relation to an additional condition, and upon determining, during scheduling, that the counter satisfies the threshold in relation to the additional condition, triggering a scheduling action with respect to at least one task.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: September 8, 2020
    Assignee: Applied Materials, Inc.
    Inventors: David Everton Norman, Andrew Charles Carson
  • Publication number: 20200277696
    Abstract: A physical vapor deposition (PVD) chamber and a method of operation thereof are disclosed. Chambers and methods are described that provide a chamber comprising an upper shield with two holes that are positioned to permit alternate sputtering from two targets.
    Type: Application
    Filed: February 26, 2020
    Publication date: September 3, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Wen Xiao, Vibhu Jindal, Sanjay Bhat
  • Publication number: 20200278605
    Abstract: Methods and apparatus for stamp generation are disclosed using nano-resist and ultra violet blocking materials. In one non-limiting embodiment, a method of producing a copy of a stamp for generating electrical/optical components is disclosed comprising: providing the stamp; coating a bottom surface of the stamp with a ultra violet blocking material; curing the ultra violet blocking material on the bottom surface; contacting the stamp to a target substrate covered with a layer of imprint resist; curing the imprint resist with ultraviolet blocking material during the contacting of the stamp to the target substrate; and releasing the stamp from the target substrate with the cured layer of imprint resist.
    Type: Application
    Filed: March 1, 2019
    Publication date: September 3, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Michael Y. YOUNG, Ludovic GODET, Robert J. VISSER
  • Publication number: 20200279763
    Abstract: Buffer chamber including robots, a carousel and at least one heating module for use with a batch processing chamber are described. Robot configurations for rapid and repeatable movement of wafers into and out of the buffer chamber and cluster tools incorporating the buffer chambers and robots are described.
    Type: Application
    Filed: May 19, 2020
    Publication date: September 3, 2020
    Applicant: Applied Materials, Inc.
    Inventors: William T. Weaver, Jason M. Schaller, Robert Brent Vopat, David Blahnik, Benjamin B. Riordon, Paul E. Pergande
  • Publication number: 20200277697
    Abstract: A physical vapor deposition (PVD) chamber and a method of operation thereof are disclosed. Chambers and methods are described that provide a chamber comprising an upper shield with two holes that are positioned to permit alternate sputtering from two targets.
    Type: Application
    Filed: February 26, 2020
    Publication date: September 3, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Sanjay Bhat, Vibhu Jindal, Wen Xiao
  • Publication number: 20200277698
    Abstract: A physical vapor deposition (PVD) chamber and a method of operation thereof are disclosed. Chambers and methods are described that provide a chamber comprising an upper shield with two holes that are positioned to permit alternate sputtering from two targets. A process for improving reflectivity from a multilayer stack is also disclosed.
    Type: Application
    Filed: February 26, 2020
    Publication date: September 3, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Vibhu Jindal, Wen Xiao, Sanjay Bhat
  • Publication number: 20200278603
    Abstract: Extreme ultraviolet (EUV) mask blanks, methods for their manufacture and EUV lithography systems are disclosed. The EUV mask blanks comprise an absorber including a tuning layer and a stack of absorber layers of a first material A and a second material B.
    Type: Application
    Filed: February 26, 2020
    Publication date: September 3, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Wen Xiao, Vibhu Jindal
  • Patent number: 10760159
    Abstract: Methods for depositing a yttrium-containing film through an atomic layer deposition process are described. Some embodiments of the disclosure utilize a plasma-enhanced atomic layer deposition process. Also described is an apparatus for performing the atomic layer deposition of the yttrium containing films.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: September 1, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Lakmal C. Kalutarage, Mark Saly, Thomas Knisley, Benjamin Schmiege, David Thompson
  • Patent number: 10763134
    Abstract: Electronic device processing apparatus including factory interface chamber with environmental controls and a purge control apparatus allowing purge of a chamber filter. The filter purge apparatus includes a chamber filter and a flushing gas supply configured to supply flushing gas to the chamber filter when an access door to the factory interface chamber is open to allow personnel safe servicing access to the factory interface chamber. The supply of flushing gas to the chamber filter minimizes moisture contamination of the chamber filter by factory ambient air when the access door is open thereby allowing rapid resumption of substrate processing after factory interface servicing. Purge control methods and apparatus are described, as are numerous other aspects.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: September 1, 2020
    Assignee: Applied Materials, Inc.
    Inventor: Michael R. Rice
  • Patent number: 10763091
    Abstract: Physical vapor deposition processing chambers and methods of processing a substrate such as an EUV mask blank in a physical vapor deposition chamber are disclosed. An electric field and a magnetic field are utilized to deflect particles from a substrate being processed in the chamber.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: September 1, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Vibhu Jindal, Sanjay Bhat, Majeed A. Foad
  • Patent number: 10763072
    Abstract: An apparatus may include a housing including an entrance aperture, to receive an ion beam. The apparatus may include an exit aperture, disposed in the housing, downstream to the entrance aperture, the entrance aperture and the exit aperture defining a beam axis, extending therebetween. The apparatus may include an electrodynamic mass analysis assembly disposed in the housing and comprising an upper electrode assembly, disposed above the beam axis, and a lower electrode assembly, disposed below the beam axis. The apparatus may include an AC voltage assembly, electrically coupled to the upper electrode assembly and the lower electrode assembly, wherein the upper electrode assembly is arranged to receive an AC signal from the AC voltage assembly at a first phase angle, and wherein the lower electrode assembly is arranged to receive the AC signal at a second phase angle, the second phase angle 180 degrees shifted from the first phase angle.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: September 1, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Frank Sinclair, Costel Biloiu, Joseph C. Olson, Alexandre Likhanskii
  • Patent number: 10763143
    Abstract: Embodiments include systems, devices, and methods for monitoring etch or deposition rates, or controlling an operation of a wafer fabrication process. In an embodiment, a processing tool includes a processing chamber having a liner wall around a chamber volume, and a monitoring device having a sensor exposed to the chamber volume through a hole in the liner wall. The sensor is capable of measuring, in real-time, material deposition and removal rates occurring within the chamber volume during the wafer fabrication process. The monitoring device can be moved relative to the hole in the liner wall to selectively expose either the sensor or a blank area to the chamber volume through the hole. Accordingly, the wafer fabrication process being performed in the chamber volume may be monitored by the sensor, and the sensor may be sealed off from the chamber volume during an in-situ chamber cleaning process. Other embodiments are also described and claimed.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: September 1, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Shimin Mao, Simon Huang, Ashish Goel, Anantha Subramani, Philip Allan Kraus
  • Patent number: 10763085
    Abstract: Plasma source assemblies comprising an RF hot electrode having a body and at least one return electrode spaced from the RF hot electrode to provide a gap in which a plasma can be formed. An RF feed is connected to the RF hot electrode at a distance from the inner peripheral end of the RF hot electrode that is less than or equal to about 25% of the length of the RF hot electrode. The RF hot electrode can include a leg and optional triangular portion near the leg that extends at an angle to the body of the RF hot electrode. A cladding material on one or more of the RF hot electrode and the return electrode can be variably spaced or have variable properties along the length of the plasma gap.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: September 1, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Kallol Bera, Dmitry A. Dzilno, Anantha K. Subramani, John C. Forster, Tsutomu Tanaka
  • Patent number: 10758978
    Abstract: An additive manufacturing apparatus includes a platform, one or more supports positioned above the platform, an actuator, a first powder dispenser that is attached to and moves with a first support from the one or more supports and is configured to selectively dispense a first powder onto the build area, a first binder material dispenser configured to selectively dispense a first binder material on a voxel-by-voxel basis to an uppermost layer of powder in the build area to form a volume of the layer having powder and binder material and corresponding to a cross-sectional portion of a part being built, a third dispensing system configured to deliver a densification material to the layer of powder or the combined layer of powder and binder material, and an energy source configured to emit radiation toward the platform so as to solidify the binder material.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: September 1, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Hou T. Ng, Nag B. Patibandla, Daihua Zhang
  • Patent number: 10763150
    Abstract: The present disclosure generally relates to plasma assisted or plasma enhanced processing chambers. More specifically, embodiments herein relate to electrostatic chucking (ESC) substrate supports configured to provide independent pulses of direct-current (“DC”) voltage through a switching system to electrodes disposed in the ESC substrate support. In some embodiments, the switching system can independently alter the frequency and duty cycle of the pulsed DC voltage that is coupled to each electrode. In some embodiments, during processing of the substrate, the process rate, such as etch rate or deposition rate, can be controlled independently in regions of the substrate because the process rate is a function of the frequency and duty cycle of the pulsed DC voltage. The processing uniformity of the process performed on the substrate is improved.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: September 1, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Roger Alan Lindley, Philip Allan Kraus, Thai Cheng Chua
  • Publication number: 20200273728
    Abstract: A workpiece holder includes a puck, first and second heating devices in thermal communication with respective inner and outer portions of the puck, and a thermal sink in thermal communication with the puck. The first and second heating devices are independently controllable, and the first and second heating devices are in greater thermal communication with the puck, than thermal communication of the thermal sink with the puck. A method of controlling temperature distribution of a workpiece includes flowing a heat exchange fluid through a thermal sink to establish a reference temperature to a puck, raising temperatures of radially inner and outer portions of the puck to first and second temperatures greater than the reference temperature, by activating respective first and second heating devices disposed in thermal communication with the radially inner and outer portions of the puck, and placing the workpiece on the puck.
    Type: Application
    Filed: March 30, 2020
    Publication date: August 27, 2020
    Applicant: Applied Materials, Inc.
    Inventors: David Benjaminson, Dmitry Lubomirsky, Ananda Seelavanth Math, Saravanakumar Natarajan, Shubham Chourey