Patents Assigned to Applied Material
  • Patent number: 11072502
    Abstract: An apparatus and method for sorting a plurality of substrates is disclosed. The apparatus includes a sorting unit capable of supporting a plurality of bins, a rotatable support disposed within the sorting unit, the rotatable support rotatable about a rotational axis, a plurality of grippers coupled to the rotatable support on a common radius relative to the rotational axis, the grippers positioned to travel along a path above the bins as the rotatable support rotates, and an air nozzle configured to reorient a sorted substrate relative to a stacked substrate in a bin of the plurality of bins when released by one of the grippers into the bin.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: July 27, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Asaf Schlezinger, Markus J. Stopper
  • Patent number: 11072050
    Abstract: Embodiments of the present disclosure provide for polishing pads that include at least one endpoint detection (EPD) window disposed through the polishing pad material, and methods of forming thereof. In one embodiment a method of forming a polishing pad includes forming a first layer of the polishing pad by dispensing a first precursor composition and a window precursor composition, the first layer comprising at least portions of each of a first polishing pad element and a window feature, and partially curing the dispensed first precursor composition and the dispensed window precursor composition disposed within the first layer.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: July 27, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Boyi Fu, Sivapackia Ganapathiappan, Daniel Redfield, Rajeev Bajaj, Ashwin Chockalingam, Dominic J. Benvegnu, Mario Dagio Cornejo, Mayu Yamamura, Nag B. Patibandla, Ankit Vora
  • Patent number: 11075276
    Abstract: Methods and apparatus for forming a semiconductor structure such as an NMOS gate electrode are described. Methods may include depositing a first capping layer having a first surface atop a first surface of a high-k dielectric layer; and depositing at least one metal layer having a first surface atop the first surface of the first capping layer, wherein the at least one metal layer includes titanium aluminum silicide material. Some methods include removing an oxide layer from the first surface of the first capping layer by contacting the first capping layer with metal chloride in an amount sufficient to remove an oxide layer. Some methods for depositing a titanium aluminum silicide material are performed by an atomic layer deposition process performed at a temperature of 350 to 400 degrees Celsius.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: July 27, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yongjing Lin, Shih Chung Chen, Naomi Yoshida, Lin Dong, Liqi Wu, Rongjun Wang, Steven Hung, Karla Bernal Ramos, Yixiong Yang, Wei Tang, Sang-Ho Yu
  • Patent number: 11075165
    Abstract: Methods and apparatus for creating a dual metal interconnect on a substrate. In some embodiments, a first liner of a first nitride material is deposited into at least one 1× feature and at least one wider than 1× feature, the first liner has a thickness of less than or equal to approximately 12 angstroms; a second liner of a first metal material is deposited into the at least one 1× feature and at least one wider than 1× feature; the first metal material is reflowed such that the at least one 1× feature is filled with the first metal material and the at least one wider than 1× feature remains unfilled with the first metal material; a second metal material is deposited on the first metal material, and the second metal material is reflowed such that the at least one wider than 1× feature is filled with the second metal material.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: July 27, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Suketu A Parikh, Rong Tao, Roey Shaviv, Joung Joo Lee, Seshadri Ganguli, Shirish Pethe, David Gage, Jianshe Tang, Michael A Stolfi
  • Patent number: 11074426
    Abstract: The present disclosure relates to systems and methods for semiconductor tool part tracking and kit verification. Data relating to part identification and performance are encoded to a unique code that is encoded into machine-readable form, such as a data matrix. A multi-dimensional array (MDA) of the data matrices of a group of parts is a ‘golden MDA’. When assembled into a kit, the parts are scanned and compared to the golden MDA. If there's a match, a kit unique code is used to generate a kit data matrix. The part data matrix codes are provided to a database to determine if a part combination will cause a coupling effect, based on part usage history.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: July 27, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Chien-Min Liao, Yao-Hung Yang, Hsiu Yang, Jeevan Shanbhag, Chun-Chung Chen, Tom K. Cho
  • Patent number: 11075105
    Abstract: Aspects of the present disclosure generally relate to apparatuses and methods for edge ring replacement in processing chambers. In one aspect, a carrier for supporting an edge ring is disclosed. In other aspects, robot blades for supporting a carrier are disclosed. In another aspect, a support structure for supporting a carrier in a degassing chamber is disclosed. In another aspect, a method of transferring an edge ring on a carrier is disclosed.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: July 27, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yogananda Sarode Vishwanath, Steven E. Babayan, Stephen Prouty, Andreas Schmid
  • Patent number: 11072049
    Abstract: Chemical mechanical polishing can be used for “touch-up polishing” in which polishing is performed on a limited area of the front surface of the substrate. The contact area between the polishing pad and the substrate can be substantially smaller than the radius surface of the substrate. During polishing, the polishing pad can undergo an orbital motion. The polishing pad can be maintained in a fixed angular orientation during the orbital motion. The contact area can be arc-shaped. The contact area can be provided by one or more lower portions projecting downward from an upper portion of the polishing pad. A perimeter portion of the polishing pad can be vertically fixed to an annular member and a remainder of the polishing pad within the perimeter portion can be vertically free.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: July 27, 2021
    Assignee: Applied Materials, Inc.
    Inventor: Hung Chih Chen
  • Patent number: 11072852
    Abstract: Embodiments of the disclosure generally relate to a process kit including a shield serving as an anode in a physical deposition chamber. The shield has a cylindrical band, the cylindrical band having a top and a bottom, the cylindrical band sized to encircle a sputtering surface of a sputtering target disposed adjacent the top and a substrate support disposed at the bottom, the cylindrical band having an interior surface. A texture is disposed on the interior surface. The texture has a plurality of features. A film is provided on a portion of the features. The film includes a porosity of about 2% to about 3.5%.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: July 27, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Brian T. West, Lizhong Sun, William M. Lu
  • Publication number: 20210225640
    Abstract: A method and apparatus for removing native oxides from a substrate surface is provided. In one aspect, the apparatus comprises a support assembly. In one embodiment, the support assembly includes a shaft coupled to a disk-shaped body. The shaft has a vacuum conduit, a heat transfer fluid conduit and a gas conduit formed therein. The disk-shaped body includes an upper surface, a lower surface and a cylindrical outer surface. A thermocouple is embedded in the disk-shaped body. A flange extends radially outward from the cylindrical outer surface, wherein the lower surface of the disk-shaped body comprises one side of the flange. A fluid channel is formed in the disk-shaped body proximate the flange and lower surface. The fluid channel is coupled to the heat transfer fluid conduit of the shaft. A plurality of grooves are formed in the upper surface of the disk-shaped body, and are coupled by a hole in the disk-shaped body to the vacuum conduit of the shaft.
    Type: Application
    Filed: April 8, 2021
    Publication date: July 22, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Chien-Teh Kao, Joel M. Huston, Mei Chang, Xiaoxiong Yuan
  • Publication number: 20210225655
    Abstract: Provided are atomic layer deposition methods to deposit a tungsten film or tungsten-containing film using a tungsten-containing reactive gas comprising one or more of tungsten pentachloride, a compound with the empirical formula WCl5 or WCl6.
    Type: Application
    Filed: April 6, 2021
    Publication date: July 22, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Xinyu Fu, Srinivas Gandikota, Avgerinos V. Gelatos, Atif Noori, Mei Chang, David Thompson, Steve G. Ghanayem
  • Patent number: 11069554
    Abstract: A platen having improved thermal conductivity and reduced friction is disclosed. In one embodiment, vertically aligned carbon nanotubes are grown on the top surface of the platen. The carbon nanotubes have excellent thermal conductivity, thus improving the transfer of heat between the platen and the workpiece. Furthermore, the friction between the carbon nanotubes and the workpiece is much lower than that with conventional embossments, reducing particle generation. In another embodiment, a support plate is disposed on the platen, wherein the carbon nanotubes are disposed on the top surface of the support plate.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: July 20, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Dawei Sun, Steven M. Anella, Qin Chen, Ron Serisky, Julian G. Blake, David J. Chipman
  • Patent number: 11069888
    Abstract: A simple solution processing method is developed to achieve uniform and scalable stabilized lithium metal powder coating on Li-ion negative electrode. A solvent and binder system for stabilized lithium metal powder coating is developed, including the selection of solvent, polymer binder and enhancement of polymer concentration. The enhanced binder solution is 1% concentration of polymer binder in xylene, and the polymer binder is chosen as the mixture of poly(styrene-co-butadiene) rubber (SBR) and polystyrene (PS). Long-sustained, uniformly dispersed stabilized lithium metal powder suspension can be achieved with the enhanced binder solution. A uniform stabilized lithium metal powder coating can be achieved with simple doctor blade coating method and the resulting stabilized lithium metal powder coating can firmly glued on the anode surface.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: July 20, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Gao Liu, Sergey D. Lopatin, Eric H. Liu, Ajey M. Joshi, Guo Ai, Zhihui Wang, Hui Zhao, Donghai Wang
  • Patent number: 11066743
    Abstract: Methods of selectively depositing ruthenium are described. The preferred deposition surface changes based on the substrate temperature during processing. At high temperatures, ruthenium is deposited on a first surface of a conductive material over a second surface of an insulating material. At lower temperatures, ruthenium is deposited on an insulating surface over a conducting surface.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: July 20, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yihong Chen, Yong Wu, Srinivas Gandikota, Abhijit Basu Mallick
  • Patent number: 11069853
    Abstract: Embodiments of the disclosure provide methods and apparatus for fabricating magnetic tunnel junction (MTJ) structures on a substrate in for hybrid (or called integrated) spin-orbit-torque magnetic spin-transfer-torque magnetic random access memory (SOT-STT MRAM) applications. In one embodiment, the method includes one or more magnetic tunnel junction structures disposed on a substrate, the magnetic tunnel junction structure comprising a first ferromagnetic layer and a second ferromagnetic layer sandwiching a tunneling barrier layer, a spin orbit torque (SOT) layer disposed on the magnetic tunnel junction structure, and a back end structure disposed on the spin orbit torque (SOT) layer.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: July 20, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Hsin-Wei Tseng, Chando Park, Jaesoo Ahn, Lin Xue, Mahendra Pakala
  • Patent number: 11069051
    Abstract: A method and apparatus for locating the center of a substrate are provided. The substrate-positioning system uses an array of visible light sources to illuminate the substrate and its edges. The light sources are non-laser in nature and typically emit in the visible spectrum. The light sources are typically LEDs so that the individual elements may be switched-on or switched-off extremely rapidly, which allows for multiple images to be taken using different light sources at any given substrate rotation position. The substrate-positioning system further includes an image sensor array with the ability to process data rapidly, which allows for the digitization (quantization) of each pixel being viewed. Algorithms analyze the values for patterns and determine the true edge position at each rotational angle of the substrate. The systems and methods described herein are able to locate the center of various types of substrates composed of different materials and/or edge types.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: July 20, 2021
    Assignee: Applied Materials, Inc.
    Inventor: Ronald Vern Schauer
  • Patent number: 11069547
    Abstract: Apparatuses and methods for in-situ temperature measurement of a process chamber are described herein. A process chamber includes an infrared (IR) sensor mounted to the chamber wall. The IR sensor is mounted such that it can be oriented to receive an IR wave from targets within the process chamber through a view port in the chamber wall to detect a temperature of a surface inside the chamber, or to receive an IR wave from a target outside of the process chamber to detect an atmospheric temperature or a temperature of an exterior surface of the process chamber. As the orientation of the IR sensor is controllable to receive the IR wave from selected directions, it may be used to detect the temperature of various targets inside and outside the process chamber. The obtained temperature information is useful to improve overall chamber matching, processing throughput, and uniformity.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: July 20, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Xue Yang Chang, Andrew Nguyen
  • Patent number: 11069514
    Abstract: Apparatus and methods for generating a flow of radicals are provided. An ion blocker is positioned a distance from a faceplate of a remote plasma source. The ion blocker has openings to allow the plasma to flow through. The ion blocker is polarized relative to a showerhead positioned on an opposite side of the ion blocker so that there are substantially no plasma gas ions passing through the showerhead.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: July 20, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Vivek B Shah, Vinayak Vishwanath Hassan, Bhaskar Kumar, Ganesh Balasubramanian
  • Patent number: 11065689
    Abstract: An additive manufacturing system includes a platform, a dispenser to dispense a plurality of layers of feed material on a top surface of the platform, a light source to generate a first light beam and a second light beam, a polygon mirror scanner, a galvo mirror scanner positioned adjacent to the polygon mirror scanner, and a controller. The controller is coupled to the light source, the polygon mirror scanner and the galvo mirror scanner, and the controller is configured to cause the light source and polygon mirror scanner to apply the first light beam to a region of the layer of feed material, and to cause the light source and galvo mirror scanner to apply the second light beam to at least a portion of the region of the layer of feed material.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: July 20, 2021
    Assignee: Applied Materials, Inc.
    Inventors: David Masayuki Ishikawa, Paul J. Steffas, Nag B. Patibandla
  • Patent number: 11066747
    Abstract: Implementations described herein relate to apparatus and methods for self-assembled monolayer (SAM) deposition. Apparatus described herein includes processing chambers having various vapor phase delivery apparatus fluidly coupled thereto. SAM precursors may be delivered to process volumes of the chambers via various apparatus which is heated to maintain the precursors in vapor phase. In one implementation, a first ampoule or vaporizer configured to deliver a SAM precursor may be fluidly coupled to the process volume of a process chamber. A second ampoule or vaporizer configured to deliver a material different from the SAM precursor may also be fluidly coupled to the process volume of the process chamber.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: July 20, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Qiwei Liang, Adib Khan, Tobin Kaufman-Osborn, Srinivas D. Nemani, Ludovic Godet
  • Patent number: 11067905
    Abstract: Embodiments of the systems and methods discussed herein autofocus an imaging apparatus by pre-processing image data received via channels of the imaging system that include laser beams and sensors configured to receive image data when laser beams are applied across a substrate in a pixel-wise application across a substrate. The substrate can include both a photoresist and metallic material, and the images as-received by the sensors include noise from the metallic material. During pre-processing of the image data, a percentage of noise to remove from the image data is determined, and the image data is filtered. A centroid of the substrate is calculated for each channel and a focus deviation for the exposure is determined. The centroids can be combined using one or more filtering mechanisms, and the imaging system can be autofocused in an exposure position by moving the stage and/or the exposure source in one or more directions.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: July 20, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Diana Valverde-Paniagua, Zhongchuan Zhang, Rendong Lin, Zheng Gu, Meenaradchagan Vishnu, Glen Alan Gomes