Patents Assigned to Applied Material
  • Patent number: 10620620
    Abstract: Techniques are disclosed for methods and apparatuses for determining when to perform or trigger events. The technique comprises determining a first cost of false positives and a second cost of missed true positives. A Receive Operating Characteristic (ROC) of a prediction model is determined for the occurrence of one or more events. The operational area on the ROC is determined based on the first costs and second costs. A threshold is determined from the ROC and is applied to a detection or prediction function. An event is triggered based on the threshold.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: April 14, 2020
    Assignee: Applied Materials, Inc.
    Inventor: James R. Moyne
  • Patent number: 10620031
    Abstract: An apparatus for the detecting the amount of material remaining in a container is disclosed. This apparatus may be beneficial when used with a semiconductor processing device, especially when the material is in the solid phase. The apparatus measures the impedance between an electrode disposed in the container, and the outside of the container to make a determination regarding how full the container may be. In certain embodiments, only the magnitude of the impedance is used for this calculation. In other embodiments, the magnitude and phase of the impedance are used. This may be used to determine the topology of the material within the container.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: April 14, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Kazuya Daito, Vijay Venugopal
  • Patent number: 10622194
    Abstract: A bulk, sintered solid solution-comprising ceramic article useful in semiconductor processing, which is resistant to erosion by halogen-containing plasmas and provides advantageous mechanical properties. The solid solution-comprising ceramic article is formed from a combination of yttrium oxide and zirconium oxide. The bulk, sintered solid solution-comprising article is formed from zirconium oxide at a molar concentration ranging from about 96 mole % to about 94 mole %, and yttrium oxide at a molar concentration ranging from about 4 mole % to about 6 mole %.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: April 14, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Ren-Guan Duan, Jie Yuan, Li Xu, Kenneth S. Collins
  • Publication number: 20200111643
    Abstract: An apparatus for plasma processing includes a first plasma source, a first planar electrode, a gas distribution device, a plasma blocking screen and a workpiece chuck. The first plasma source produces first plasma products that pass, away from the first plasma source, through first apertures in the first planar electrode. The first plasma products continue through second apertures in the gas distribution device. The plasma blocking screen includes a third plate with fourth apertures, and faces the gas distribution device such that the first plasma products pass through the plurality of fourth apertures. The workpiece chuck faces the second side of the plasma blocking screen, defining a process chamber between the plasma blocking screen and the workpiece chuck. The fourth apertures are of a sufficiently small size to block a plasma generated in the process chamber from reaching the gas distribution device.
    Type: Application
    Filed: December 5, 2019
    Publication date: April 9, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Toan Q. Tran, Soonam Park, Zilu Weng, Dmitry Lubomirsky
  • Patent number: 10615050
    Abstract: Methods for seam-less gapfill comprising depositing a film in a feature, treating the film to change some film property and selectively etching the film from the top surface are described. The deposition, treatment and etching are repeated to form a seam-less gapfill in the feature.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: April 7, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Rui Cheng, Abhijit Basu Mallick, Pramit Manna, Yihong Chen
  • Patent number: 10615041
    Abstract: Methods of modifying the threshold voltage of metal oxide stacks are discussed. These methods utilize materials which provide larger shifts in threshold voltage while also being annealed at lower temperatures.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: April 7, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Siddarth Krishnan, Rajesh Sathiyanarayanan, Atashi Basu, Paul F. Ma
  • Patent number: 10615007
    Abstract: A gas distribution plate for a plasma reactor has a dielectric front plate and a dielectric back plate bonded together, with gas injection orifices extending through the front plate and gas supply channels in the surface of front plate facing the back plate. The back plate is joined to a heat reflective plate, or the back plate itself is formed of a heat reflective material, such as Beryllium Oxide.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: April 7, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Michael W. Stowell, Qiwei Liang
  • Patent number: 10612121
    Abstract: An article comprises a body and at least one final plasma resistant coating layer on at least one surface of the body. The at least one final plasma resistant coating layer is a mixture of a ScF3 and an initial plasma resistant coating material selected from the group consisting of YF3, Y2O3, a compound of Y4Al2O9, a solid-solution of Y2O3—ZrO2, CaF2, MgF2, SrF2, AlF3, ErF3, LaF3, NdF3, ScF3, CeF4, ZrF4, and combinations thereof. The at least one final plasma resistant coating layer has a thermal expansion coefficient that is within about 20% of the thermal expansion coefficient of the body.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: April 7, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Chengtsin Lee, Jennifer Y. Sun
  • Patent number: 10615047
    Abstract: Exemplary etching methods may include flowing a fluorine-containing precursor into a substrate processing region of a semiconductor processing chamber. The methods may include flowing a hydrogen-containing precursor into the substrate processing region. The methods may include contacting a substrate housed in the substrate processing region with the fluorine-containing precursor and the hydrogen-containing precursor. The substrate may include a trench or recessed feature, and a spacer may be formed along a sidewall of the trench or feature. The spacer may include a plurality of layers including a first layer of a carbon-containing or nitrogen-containing material, a second layer of an oxygen-containing material, and a third layer of a carbon-containing or nitrogen-containing material. The second layer of the spacer may be disposed between the first layer and third layer of the spacer. The methods may also include removing the oxygen-containing material.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: April 7, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Zhijun Chen, Lin Xu, Anchuan Wang
  • Publication number: 20200106012
    Abstract: Exemplary methods of forming a nickel-containing film may include simultaneously flowing a nickel-containing precursor and an oxygen-containing precursor into a semiconductor processing chamber. The methods may include forming a first layer of a nickel-and-oxygen-containing film overlying a substrate housed within the semiconductor processing chamber. The methods may include halting the simultaneous flow. The methods may include flowing a first precursor selected from the nickel-containing precursor and the oxygen-containing precursor into the semiconductor processing chamber. The methods may include flowing a second precursor selected from the nickel-containing precursor and the oxygen-containing precursor into the semiconductor processing chamber. The second precursor may be different from the first precursor. The methods may also include forming a second layer of the nickel-and-oxygen-containing film overlying the first layer of the nickel-and-oxygen-containing film.
    Type: Application
    Filed: September 26, 2019
    Publication date: April 2, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Hung Nguyen, Liqi Wu, Feng Q. Liu, Jeffery W. Anthis, Ria Someshwar, Nicolas Louis Gabriel Breil
  • Patent number: 10608097
    Abstract: Film stacks and methods of forming film stacks including a high-k dielectric layer on a substrate, a high-k capping layer on the high-k dielectric layer, an n-metal layer on the high-k capping layer and an n-metal capping layer on the n-metal layer. The n-metal layer having an aluminum rich interface adjacent the high-k capping layer.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: March 31, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Paul F. Ma, Seshadri Ganguli, Shih Chung Chen, Rajesh Sathiyanarayanan, Atashi Basu, Lin Dong, Naomi Yoshida, Sang Ho Yu, Liqi Wu
  • Patent number: 10607867
    Abstract: A workpiece holder includes a puck, first and second heating devices in thermal communication with respective inner and outer portions of the puck, and a thermal sink in thermal communication with the puck. The first and second heating devices are independently controllable, and the first and second heating devices are in greater thermal communication with the puck, than thermal communication of the thermal sink with the puck. A method of controlling temperature distribution of a workpiece includes flowing a heat exchange fluid through a thermal sink to establish a reference temperature to a puck, raising temperatures of radially inner and outer portions of the puck to first and second temperatures greater than the reference temperature, by activating respective first and second heating devices disposed in thermal communication with the radially inner and outer portions of the puck, and placing the workpiece on the puck.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: March 31, 2020
    Assignee: Applied Materials, Inc.
    Inventors: David Benjaminson, Dmitry Lubomirsky, Ananda Seelavanth Math, Saravanakumar Natarajan, Shubham Chourey
  • Patent number: 10604831
    Abstract: A ceramic coating is coated on a body of an article, wherein the ceramic coating includes Y2O3, Y4Al2O9, Y3Al5O12, or a solid-solution of Y2O3 mixed with at least one of ZrO2, Al2O3, HfO2, Er2O3, Nd2O3, Nb2O5, CeO2, Sm2O3 or Yb2O3. The ceramic coating is applied to the body by a method including providing a plasma spraying system having a plasma current in the range of between about 100 A to about 1000 A, positioning a torch standoff of the plasma spraying system a distance from the body between about 60 mm and about 250 mm, flowing a first gas through the plasma spraying system at a rate of between about 30 L/min and about 400 L/min, and plasma spray coating the body to form a ceramic coating, wherein splats of the coating are amorphous and have a pancake shape.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: March 31, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Yikai Chen, Biraja Prasad Kanungo
  • Patent number: 10607847
    Abstract: A method of forming a three-dimensional transistor device. The method may include providing a fin array on a substrate, the fin array comprising a plurality of fin structures, formed from a monocrystalline semiconductor, and disposed subjacent to a hard mask layer. The method may include directing angled ions at the fin array, wherein the angled ions form a non-zero angle of incidence with respect to a perpendicular to a plane of the substrate. The angled ions may etch the plurality of fin structures to form a stack of isolated nanowires, within a given fin structure.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: March 31, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Min Gyu Sung, Sony Varghese, Anthony Renau, Morgan Evans, Joseph C. Olson
  • Patent number: 10603284
    Abstract: The present invention relates to the field of coating pharmaceutical substrates. In particular, the invention relates to methods of coating of pharmaceutical substances, pharmaceutical ingredients or a blend of them. The invention also provides a method of making a pharmaceutical formulation which may be processed into a pharmaceutical dosage form, which utilizes solid pharmaceutical particles and a pharmaceutical formulation obtained by the method. The methods of the invention utilize atomic layer deposition technology. The novel methods allow difficult, moisture sensitive and electrically charged pharmaceutical substrates to be easily processable.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: March 31, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Pekka Hoppu, Tommi Kaariainen, Marja-Leena Kaariainen, Aimo Turunen
  • Patent number: 10604846
    Abstract: Embodiments described herein relate to a thermal chamber utilized in the processing of display substrates. The thermal chamber may be part of a larger processing system configured to manufacture OLED devices. The thermal chamber may be configured to heat and cool masks and/or substrates utilized in deposition processes in the processing system. The thermal chamber may include a chamber body defining a volume sized to receive one or more cassettes containing a plurality of masks and/or substrates. Heaters coupled to the chamber body within the volume may be configured to controllably heat masks and/or substrates prior to deposition processes and cool the masks and/or substrates after deposition processes.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: March 31, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Shinichi Kurita, Makoto Inagawa, Suhas Bhoski
  • Patent number: 10607817
    Abstract: Embodiments described herein generally related to a substrate processing apparatus, and more specifically to an improved showerhead assembly for a substrate processing apparatus. The showerhead assembly includes a gas distribution plate and one or more temperature detection assemblies. The gas distribution plate includes a body having a top surface and a bottom surface. The one or more temperature detection assemblies are interfaced with the top surface of the gas distribution plate such that a thermal bond is formed between the gas distribution plate and each of the one or more temperature detection assemblies. Each temperature detection assembly includes a protruded feature and a temperature probe. The protruded feature is interfaced with the top surface of the gas distribution plate such that an axial load is placed on the gas distribution plate along an axis of the protruded feature. The temperature probe is positioned in a body of the protruded feature.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: March 31, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Timothy Joseph Franklin, Steven E. Babayan, Philip Allan Kraus
  • Patent number: 10603892
    Abstract: An additive manufacturing apparatus includes a dispensing system positionable over a platen to deliver a powder, an actuator to move the dispensing system along a scan axis, and an energy source to fuse a portion of the powder. The dispensing system has a hopper to hold the powder and a dispenser. The dispenser includes a channel extending along a longitudinal axis from a proximal end to a distal end. The proximal end of the channel of the dispenser is configured to receive the powder from the powder source. A powder conveyor is positioned within the channel to move the powder from the proximal end along a length of the channel, and a plurality of apertures are arranged along the longitudinal axis of the channel. The dispenser is configured such that flow of powder through each aperture is independently controllable.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: March 31, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Hou T. Ng, Raanan Zehavi, Nag B. Patibandla
  • Patent number: 10607841
    Abstract: Methods for forming silicide films are disclosed. Methods of selectively depositing metal-containing films on silicon surfaces which are further processed to form silicide films are disclosed. Specific embodiments of the disclosure relate to the formation of silicide films on FinFET structures without the formation of a metal layer on the dielectric.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: March 31, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Swaminathan Srinivasan, Abhijit Basu Mallick, Nicolas Breil
  • Patent number: 10608145
    Abstract: An illumination device is described for desorbing molecules from inner walls of a processing chamber. In some examples, the device includes a chassis, a plurality of light emitting diodes (LEDs) mounted to the chassis, wherein the plurality of LEDs emit ultraviolet (UV) radiation when electrically powered, a thermally non-conductive main housing surrounding the chassis and configured to be placed on a wafer carrier of the processing chamber, and an electrical system to activate the LEDs within the processing chamber.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: March 31, 2020
    Assignee: Applied Materials, Inc.
    Inventor: Ricardo Mateo Ramirez, III