Patents Assigned to Applied Material
  • Patent number: 7699295
    Abstract: Embodiments of the invention provide an apparatus for generating a precursor gas used in a vapor deposition process system. The apparatus contains a canister or an ampoule for containing a chemical precursor and a splash guard contained within the ampoule. The splash guard is positioned to obstruct the chemical precursor in a liquid state from being bumped or splashed into a gas outlet during the introduction of a carrier gas into the ampoule. The carrier gas is usually directed into the ampoule through a gas inlet and combines with the vaporized chemical precursor to form a precursor gas. The splash guard is also positioned to permit the passage of the precursor gas from the gas outlet. In one example, the gas outlet contains a stem with a tapered tip and the splash guard is positioned at an angle parallel to the plane of the tapered tip.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: April 20, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Wei Ti Lee, Steve H. Chiao
  • Patent number: 7700486
    Abstract: A method for seasoning a chamber and depositing a low dielectric constant layer on a substrate in the chamber is provided. In one aspect, the method includes seasoning the chamber with a first mixture comprising one or more organosilicon compounds and one or more oxidizing gases and depositing a low dielectric constant layer on a substrate in the chamber from a second mixture comprising one or more organosilicon compounds and one or more oxidizing gases, wherein a ratio of the total flow rate of the organosilicon compounds to the total flow rate of the oxidizing gases in the first mixture is lower than the total flow rate of the organosilicon compounds to the total flow rate of the oxidizing gases in the second mixture.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: April 20, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Sohyun Park, Wen H. Zhu, Tzu-Fang Huang, Li-Qun Xia, Hichem M'Saad
  • Patent number: 7699688
    Abstract: A carrier head that has a base assembly, a retaining ring assembly, a carrier ring, and a flexible membrane is described. A carrier ring has an annular upper portion and an annular lower portion having a lower surface with a smaller inner diameter than the upper surface of the annular upper portion, wherein the carrier ring circumferentially surrounds a retaining ring and has a lower surface to contact a polishing pad.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: April 20, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Steven M. Zuniga, Andrew J. Nagengast, Jeonghoon Oh
  • Patent number: 7699935
    Abstract: A method and apparatus for cleaning a process chamber are provided. In one embodiment, a process chamber is provided that includes a remote plasma source and a process chamber having at least two processing regions. Each processing region includes a substrate support assembly disposed in the processing region, a gas distribution system configured to provide gas into the processing region above the substrate support assembly, and a gas passage configured to provide gas into the processing region below the substrate support assembly. A first gas conduit is configured to flow a cleaning agent from the remote plasma source through the gas distribution assembly in each processing region while a second gas conduit is configured to divert a portion of the cleaning agent from the first gas conduit to the gas passage of each processing region.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: April 20, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Ramprakash Sankarakrishnan, Dale DuBois, Ganesh Balasubramanian, Karthik Janakiraman, Juan Carlos Rocha-Alvarez, Thomas Nowak, Visweswaren Sivaramakrishnan, Hichem M'Saad
  • Patent number: 7700424
    Abstract: Methods for forming embedded epitaxial layers containing silicon and carbon are disclosed. Specific embodiments pertain to the formation embedded epitaxial layers containing silicon and carbon on silicon wafers. In specific embodiments an epitaxial layer of silicon and carbon is non-selectively formed on a substrate or silicon wafer, portions of this layer are removed to expose the underlying substrate or silicon wafer, and an epitaxial layer containing silicon is formed on the exposed substrate or silicon wafers. In specific embodiments, gates are formed on the resulting silicon-containing epitaxial layers.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: April 20, 2010
    Assignee: Applied Materials, Inc.
    Inventors: John Boland, Zhiyuan Ye, Yihwan Kim
  • Patent number: 7699972
    Abstract: A method and apparatus for evaluating a conditioned electrochemical mechanical polishing pad are provided. A polishing pad is conditioned using a first set of process conditions. A sheet wafer and a residue wafer are polished on the polishing pad. The removal rates of one or more materials from the sheet wafer and the residue wafer are measured. A normalized removal rate is calculated. The polishing pad is further conditioned if the normalized removal rate is not within a minimum value and a maximum value. In one embodiment, the normalized removal rate comprises a ratio of the removal rate of the residue wafer to the removal rate of the sheet wafer.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: April 20, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Zhihong Wang, Yongqi Hu, Stan D. Tsai
  • Patent number: 7700049
    Abstract: In certain embodiments, an apparatus is provided for use in removing pollutants from a gas stream. The apparatus includes a thermal reaction unit formed from a plurality of stacked porous ceramic rings. At least one of the stacked ceramic sections may be adapted to allow sensing of a characteristic of contents of the central chamber. In some embodiments, waste gas inlets to the thermal reaction unit may be angled to create a helical vortex within the thermal reaction unit. Other aspects are provided.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: April 20, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Daniel O. Clark, Sebastien Raoux, Robert M. Vermeulen, Shaun W. Crawford
  • Patent number: 7700465
    Abstract: A method for ion implanting a species into a surface layer of a workpiece in a chamber includes placing the workpiece in a processing zone of the chamber bounded by a chamber side wall and a chamber ceiling facing said workpiece and between a pair of ports of the chamber near generally opposite sides to the processing zone and connected together by a conduit external of the chamber. The method further includes introducing into the chamber a process gas comprising the species to be implanted, and further generating from the process gas a plasma current and causing the plasma current to oscillate in a circulatory reentrant path comprising the conduit and the processing zone.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: April 20, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Hiroji Hanawa, Kartik Ramaswamy, Andrew Nguyen, Amir Al-Bayati, Biagio Gallo, Gonzalo Antonio Monroy
  • Patent number: 7699023
    Abstract: Embodiments as described herein provide an apparatus and a method for performing an atomic layer deposition process. In one embodiment, a deposition chamber assembly contains a substrate support having a substrate receiving surface, and a chamber lid containing a tapered passageway extending from a central portion of the chamber lid, and a bottom surface extending from the passageway to a peripheral portion of the chamber lid, the bottom surface shaped and sized to substantially cover the substrate receiving surface. The system also includes one or more valves coupled to the gradually expanding channel, and one or more gas sources coupled to each valve. In one example, the gas source is a gas box assembly which is attached to the deposition chamber by at least one disconnect fitting and contains an inlet tube directed away from the gas outlet.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: April 20, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Ling Chen, Vincent Ku, Dien-Yeh Wu, Hua Chung, Alan Ouye, Norman Nakashima, Mei Chang
  • Publication number: 20100092658
    Abstract: The present invention refers to a coating installation and a corresponding method or coating a substrate comprising the steps of: providing a substrate having at least one surface to be coated; depositing a patterned mask layer on the at least one surface of the substrate by using a printing method, the patterned mask layer comprising one or more balls; depositing at least one layer of coating material on the surface of the substrate having the patterned mask layer deposited thereon, depositing of the at least one layer being performed by at least one of the group comprising a vacuum deposition method, a sputtering method, an evaporation method, a plasma coating method, a CVD method, and a PVD method.
    Type: Application
    Filed: October 14, 2008
    Publication date: April 15, 2010
    Applicant: Applied Materials, Inc.
    Inventors: Jose Manuel Dieguez-Campo, John M. White, Heike Landgraf
  • Patent number: 7696117
    Abstract: A ceramic article which is resistant to erosion by halogen-containing plasmas used in semiconductor processing. The ceramic article includes ceramic which is multi-phased, typically including two phase to three phases. The ceramic is formed from yttrium oxide at a molar concentration ranging from about 50 mole % to about 75 mole %; zirconium oxide at a molar concentration ranging from about 10 mole % to about 30 mole %; and at least one other component, selected from the group consisting of aluminum oxide, hafnium oxide, scandium oxide, neodymium oxide, niobium oxide, samarium oxide, ytterbium oxide, erbium oxide, cerium oxide, and combinations thereof, at a molar concentration ranging from about 10 mole % to about 30 mole %.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: April 13, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Ren-Guan Duan, Jie Yuan, Li Xu, Kenneth S. Collins
  • Patent number: 7695232
    Abstract: A new apparatus for processing substrates is disclosed. A multi-level load lock chamber having four environmentally isolated chambers interfaces with a transfer chamber that has a robotic assembly. The robotic assembly has two arms that each can move horizontally as the robotic assembly rotates about its axis. The arms can reach into the isolated chambers of the load lock to receive substrates from the bottom isolated chambers, transport the substrates to process chambers, and then place the substrates in the upper chambers. The isolated chambers in the load lock chamber may have a pivotably attached lid that may be opened to access the inside of the isolated chambers.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: April 13, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Robert B. Moore, Eric Ruhland, Satish Sundar, Mario David Silvetti
  • Patent number: 7695567
    Abstract: A chamber passivation method particularly useful for hydrogen plasma cleaning of low-k dielectrics prior to coating a barrier layer into a via hole with hydrogen radicals are provided from a remote plasma source. For each wafer, the chamber is passivated with water vapor (or other gas even more chemabsorbed on plasma facing walls) passed through the remote plasma source prior to the ignition of the hydrogen plasma. The water vapor is absorbed on walls, such as alumina and quartz parts of the remote plasma source, and forms a protective mono-layer that endures sufficiently long to protect the walls during the generation of the hydrogen plasma. Thereby, the plasma facing walls, particularly of a dielectric such as alumina, are protected from etching.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: April 13, 2010
    Assignee: Applied Materials, Inc.
    Inventor: Xinyu Fu
  • Patent number: 7695590
    Abstract: A plasma reactor for processing a semiconductor workpiece includes a reactor chamber and a set of plural parallel ion shower grids that divide the chamber into an upper ion generation region and a lower reactor region, each of the ion shower grids having plural orifices in mutual registration from grid to grid, each orifice being oriented in a non-parallel direction relative to a surface plane of the respective ion shower grid. A workpiece support in the process region faces the lowermost one of the ion shower grids. A reactive species source furnishes into the ion generation region a chemical vapor deposition precursor species. The reactor further includes a vacuum pump coupled to the reactor region, a plasma source power applicator for generating a plasma in the ion generation region and a grid potential source coupled to the set of ion shower grids.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: April 13, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Hiroji Hanawa, Tsutomu Tanaka, Kenneth S. Collins, Amir Al-Bayati, Kartik Ramaswamy, Andrew Nguyen
  • Patent number: 7694688
    Abstract: The present invention generally provides an apparatus and method for processing and transferring substrates in a multi-chamber processing system that has the capability of receiving and performing single substrate processing steps performed in parallel, while using the many favorable aspects of batch processing. Embodiments of the invention described herein are adapted to maximize system throughput, reduce system cost, reduce cost per substrate during processing, increase system reliability, improve the device yield on the processed substrates, and reduce system footprint. In one embodiment, the cluster tool is adapted to perform a wet/clean process sequence in which various substrate cleaning processes are performed on a substrate in the cluster tool.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: April 13, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Paul Lester, Scott Meyer, Wyland L. Atkins, Douglas Richards, Constantin Predoaica, Jeffrey Hudgens, Charles Carlson, Penchala Kankanala, Mike Rice, James S. Papanu, Evanson G. Baiya, John J. Rosato
  • Patent number: 7696497
    Abstract: Apparatus for focusing a charged particle beam onto a surface, including a charged particle beam generator which is adapted to project the charged particle beam onto a location on the surface, thereby causing charges to be emitted from the location. The apparatus further includes an imaging detector which is adapted to receive the charges so as to form an image of the location, and an aberrating element which is positioned before the imaging detector and which is adapted to produce an aberration in the image. A processor is adapted to receive the image and to adjust at least one of the charged particle beam generator and a position of the surface in response to the aberration.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: April 13, 2010
    Assignees: Applied Materials Israel, Ltd., Carl Zeiss AG
    Inventor: Steven Robert Rogers
  • Patent number: 7695700
    Abstract: An effluent gas stream treatment system for treatment of gaseous effluents such as waste gases from semiconductor manufacturing operations. The effluent gas stream treatment system comprises a pre-oxidation treatment unit, which may for example comprise a scrubber, an oxidation unit such an electrothermal oxidizer, and a post-oxidation treatment unit, such as a wet or dry scrubber. The effluent gas stream treatment system of the invention may utilize an integrated oxidizer, quench and wet scrubber assembly, for abatement of hazardous or otherwise undesired components from the effluent gas stream. Gas or liquid shrouding of gas streams in the treatment system may be provided by high efficiency inlet structures.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: April 13, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Mark Holst, Kent Carpenter, Scott Lane, Prakash V. Arya
  • Patent number: 7697260
    Abstract: An electrostatic chuck is capable of attachment to a pedestal in a process chamber. The chuck has an electrostatic puck comprises a ceramic body with an embedded electrode. The ceramic body has a substrate support surface with an annular periphery. The chuck also has a base plate below the electrostatic puck that is a composite of a ceramic material and a metal. The base plate has an annular flange extending beyond the periphery of the ceramic body. The base plate and electrostatic puck can be supported by a support pedestal having a housing and an annular ledge that extends outwardly from the housing to attach to the annular flange of the base plate. A heat transfer plate having an embedded heat transfer fluid channel can also be provided.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: April 13, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Karl Brown, Nora Arellano, Semyon Sherstinsky, Allen Lau, Cheng-Hsiung Tsai, Vineet Mehta, Steve Sansoni, Wei W. Wang
  • Patent number: 7695983
    Abstract: A method of processing a workpiece in a plasma reactor includes coupling RF power from at least three RF power source of three respective frequencies to plasma in the reactor, setting ion energy distribution shape by selecting a ratio between the power levels of a first pair of the at least three RF power sources, and setting ion dissociation and ion density by selecting a ratio between the power levels of a remaining one of the three RF power sources and an applied magnetic field. The three respective frequencies can be an LF frequency, an HF frequency and a VHF frequency, wherein the first pair corresponds to the LF and HF frequencies and the second pair corresponds to the HF and VHF frequencies.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: April 13, 2010
    Assignee: Applied Materials, Inc.
    Inventor: Daniel J. Hoffman
  • Patent number: 7694647
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. Embodiments also provide for a method and apparatus that are used to improve the coater chamber, the developer chamber, the post exposure bake chamber, the chill chamber, and the bake chamber process results. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: April 13, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue