Abstract: A source of IR radiation is used to heat a plastic substrate in a fast fashion inside a processing chamber, where the processing chamber is configured to preheat the plastic substrate and to perform thin film deposition, such as chemical vapor deposition (CVD) or physical vapor deposition (PVD), or plasma etching and cleaning. One aspect of using the source of IR radiation is to preheat only the surface of the plastic substrate while the core of the plastic substrate remains substantially unheated, so that the structure of the plastic substrate may remain unchanged. Meanwhile, the surface properties of the plastic substrate may be modified after the preheating treatment. The source of IR radiation may be provided at wavelength selected to substantially match the absorption wavelength of the plastic substrate. The plastic substrate moves through the heat flux zone generated by the source of IR radiation at a controllable speed.
Abstract: The present invention generally provides apparatus for supporting a large area substrate in a plasma reactor. One embodiment, a substrate support for using in a plasma reactor includes an electrically conductive body has a top surface with a plurality of roll-formed indents.
Type:
Application
Filed:
March 19, 2009
Publication date:
September 24, 2009
Applicant:
Applied Materials, Inc.
Inventors:
Gaku Furuta, David Atchley, Soo Young Choi, John M. White
Abstract: A polishing system can have a rotatable platen, a polishing pad secured to the platen, a carrier head to hold a substrate against the polishing pad, and an eddy current monitoring system including a coil or ferromagnetic body that extends at least partially through the polishing pad. A polishing pad can have a polishing layer and a coil or ferromagnetic body secured to the polishing layer. Recesses can be formed in a transparent window in the polishing pad.
Type:
Grant
Filed:
September 26, 2005
Date of Patent:
September 22, 2009
Assignee:
Applied Materials, Inc.
Inventors:
Manoocher Birang, Boguslaw A. Swedek, Hyeong Cheol Kim
Abstract: In one embodiment, an apparatus for performing an atomic layer deposition (ALD) process is provided which includes a chamber body containing a substrate support, a lid assembly attached to the chamber body, a remote plasma system (RPS) in fluid communication with the reaction zone, a centralized expanding conduit extending through the lid assembly and expanding radially outwards, a first gas delivery sub-assembly configured to deliver a first process gas, and a second gas delivery sub-assembly configured to deliver a second process gas into the centralized expanding conduit. The first gas delivery sub-assembly contains an annular channel encircling and in fluid communication with the centralized expanding conduit, wherein the annular channel is adapted to deliver the first process gas through a plurality of passageways and nozzles and into the centralized expanding conduit. The second gas delivery sub-assembly contains a gas inlet in fluid communication to the centralized expanding conduit.
Type:
Grant
Filed:
July 11, 2008
Date of Patent:
September 22, 2009
Assignee:
Applied Materials, Inc.
Inventors:
Ling Chen, Vincent W. Ku, Mei Chang, Dien-Yeh Wu, Hua Chung
Abstract: In a plasma enhanced physical vapor deposition of a material onto workpiece, a metal target faces the workpiece across a target-to-workpiece gap less than a diameter of the workpiece. A carrier gas is introduced into the chamber and gas pressure in the chamber is maintained above a threshold pressure at which mean free path is less than 5% of the gap. RF plasma source power from a VHF generator is applied to the target to generate a capacitively coupled plasma at the target, the VHF generator having a frequency exceeding 30 MHz. The plasma is extended across the gap to the workpiece by providing through the workpiece a first VHF ground return path at the frequency of the VHF generator.
Type:
Application
Filed:
March 14, 2008
Publication date:
September 17, 2009
Applicant:
Applied Materials, Inc.
Inventors:
Daniel J. Hoffman, Karl M. Brown, Ying Rui, John Pipitone
Abstract: Embodiments of an apparatus for generating a chemical precursor used in a vapor deposition processing system are provide which include a canister having a sidewall, a top, and a bottom forming an interior volume which is in fluid communication with an inlet port and an outlet port. The canister contains a plurality of baffles that extend from the bottom to an upper portion of the interior volume and form an extended mean flow path between the inlet port and the outlet port. In one embodiment, the baffles are contained on a prefabricated insert positioned on the bottom of the canister. In one example, an inlet tube may extend from the inlet port into the interior region and be positioned substantially parallel to the baffles. An outlet end of the inlet tube may be adapted to direct a gas flow away from the outlet port, such as towards the sidewall or top of the canister.
Type:
Grant
Filed:
May 16, 2006
Date of Patent:
September 15, 2009
Assignee:
Applied Materials, Inc.
Inventors:
Ling Chen, Vincent W. Ku, Hua Chung, Christophe Marcadal, Seshadri Ganguli, Jenny Lin, Dien-Yeh Wu, Alan Ouye, Mei Chang
Abstract: According to one embodiment of the invention, a method of modifying a mechanical, physical and/or electrical property of a dielectric layer comprises exposing the dielectric layer to a first dose of electron beam radiation at a first energy level; and thereafter, exposing the dielectric layer to a second dose of electron beam radiation at a second energy level that is different from the first energy level.
Type:
Grant
Filed:
February 1, 2005
Date of Patent:
September 15, 2009
Assignee:
Applied Materials, Inc.
Inventors:
Alexandros T. Demos, Li-Qun Xia, Tzu-Fang Huang, Wen H. Zhu
Abstract: A method of applying a sculptured copper seed layer on a semiconductor feature surface using ion deposition sputtering. A first protective layer of material is deposited on a substrate surface using traditional sputtering or ion deposition sputtering, in combination with sufficiently low substrate bias that a surface onto which the layer is applied is not eroded away or contaminated during deposition of the protective layer. Subsequently, a sculptured second layer of material is applied using ion deposition sputtering at an increased substrate bias, to sculpture a shape from a portion of the first protective layer of material and the second layer of depositing material.
Type:
Grant
Filed:
March 10, 2008
Date of Patent:
September 15, 2009
Assignee:
Applied Materials, Inc.
Inventors:
Tony Chiang, Gongda Yao, Peijun Ding, Fusen E. Chen, Barry L. Chin, Gene Y. Kohara, Zheng Xu, Hong Zhang
Abstract: A first aspect of the invention provides a method of selectively forming an epitaxial layer on a substrate. The method includes heating the substrate to a temperature of less than about 800° C. and employing both silane and dichlorosilane as silicon sources during epitaxial film formation. Numerous other aspects are provided.
Abstract: A method of PECVD deposition of silicon-containing films has been discovered and further developed. The method is particularly useful when the films are deposited on substrates having surface areas which are larger than 25,000 cm2. The method prevents the deposition of partially reacted silicon-containing species which form a powdery material or haze (contaminant compound) on the substrate surface. The contaminant compounds are avoided by assuring that the power applied to form a plasma in the PECVD process is maintained, at least at a minimal level, until reactive silicon-containing precursor gases present above the surface of the substrate have been reacted or evacuated from the plasma processing area.
Type:
Grant
Filed:
December 1, 2006
Date of Patent:
September 15, 2009
Assignee:
Applied Materials, Inc.
Inventors:
Suhail Anwar, Chung-Hee Park, Beom Soo Park, Han Byoul Kim, Soo Young Choi, John M. White
Abstract: Systems, methods, and apparatus are provided for including a chip embedded in components of electronic device manufacturing systems adapted to sense, store, and/or update at least one of identification, operational-related and process-related information associated with the components. In other aspects of the invention, a processing chamber component having an embedded chip with storage capacity is adapted to record at least one of identification, operational-related and process-related information associated with the component; and to communicate the information from the chip to enable determination of an operational state of the component. Numerous other aspects are disclosed.
Type:
Grant
Filed:
February 7, 2007
Date of Patent:
September 15, 2009
Assignee:
Applied Materials, Inc.
Inventors:
William Allan Bagley, Paohuei Lee, Suhail Anwar, Janusz Jozwiak
Abstract: An optical inspection system rapidly evaluates a substrate by illumination of an area of a substrate larger than a diffraction-limited spot using a coherent laser beam by breaking temporal or spatial coherence. Picosecond or femtosecond pulses from a modelocked laser source are split into a plurality of spatially separated beamlets that are temporally and/or frequency dispersed, and then focused onto a plurality of spots on the substrate. Adjacent spots, which can overlap by up to about 60-70 percent, are illuminated at different times, or at different frequencies, and do not produce mutually interfering coherence effects. Bright-field and dark-field detection schemes are used in various combinations in different embodiments of the system.
Abstract: A process for removing unwanted deposition build-up from one or more interior surfaces of a substrate processing chamber. According to one embodiment the process comprises performing a substrate processing operation on the substrate within the substrate processing chamber and then transferring the substrate out of the substrate processing chamber; flowing a first etchant gas into a remote plasma source, forming reactive species from the etchant gas and transporting the reactive species into the substrate processing chamber to remove a first portion of the unwanted deposition build-up; and thereafter, flowing a second etchant gas into the substrate processing chamber and forming a plasma within the substrate processing chamber from the second gas in order to remove a second portion of the unwanted deposition build-up.
Type:
Grant
Filed:
July 1, 2002
Date of Patent:
September 15, 2009
Assignee:
Applied Materials, Inc.
Inventors:
Zhenjiang Cui, Michael S. Cox, Canfeng Lai, Paddy Krishnaraj
Abstract: A sputtering target assembly and method for bonding a sputtering target to a backing plate is disclosed. When insulatively bonding a sputtering target to a backing plate, it is necessary to ensure that the bonding material has good thermal conductivity so that the temperature of the target can be effectively controlled. It is also important to not have electrical conductivity through the bonding materials. In order to achieve both goals, it is beneficial to utilize an elastomer with diamond powder filler. Diamond power has very good thermal conductivity, and it also has very good dielectric strength. Diamond is a thermally effective and cost effective substitute for silver in insulative bonding.
Abstract: A plasma enhanced physical vapor deposition process deposits an amorphous carbon layer on an ion-implanted wafer for use in dynamic surface annealing of the wafer with an intense line beam of a laser wavelength. The deposition process is carried out at a wafer temperature below the dopant clustering threshold temperature, and includes introducing the wafer into a chamber and furnishing a hydrocarbon process gas into the chamber, preferably propylene (C3H6) or toluene (C7H8) or acetylene (C2H2) or a mixture of acetylene and methane (C2H4). The process further includes inductively coupling RF plasma source power into the chamber while and applying RF plasma bias power to the wafer. The wafer bias voltage is set to a level at which the amorphous carbon layer that is deposited has a desired stress (compressive or tensile). We have discovered that at a wafer temperature less than or equal to 475 degrees C.
Type:
Grant
Filed:
March 28, 2007
Date of Patent:
September 15, 2009
Assignee:
Applied Materials, Inc.
Inventors:
Vijay Parihar, Christopher Dennis Bencher, Rajesh Kanuri, Marlon E. Menezes
Abstract: A detachable electrostatic chuck is capable of being attached to a pedestal in a process chamber. The chuck comprises an electrostatic puck having a ceramic body with an embedded electrode. The chuck also has a baseplate below the electrostatic puck with a lower surface which is bonded to a sealing assembly comprising a sealing plate and sealing ring. The sealing plate and ring are polished to form a gas-tight seal between the chuck and pedestal to prevent gas leakage from or into this region.
Type:
Grant
Filed:
October 13, 2006
Date of Patent:
September 15, 2009
Assignee:
Applied Materials, Inc.
Inventors:
Vijay D. Parkhe, Cheng-Tsiung Tsai, Steven V. Sansoni
Abstract: A method for analyzing an image includes identifying a curved segment of a contour that is associated with noise. The curved segment is smoothed so as to reduce the noise that is associated with the curved segment, thereby providing a smoothed segment. The smoothed segment is transformed to a natural coordinate system, thereby providing a transformed segment. A line is fitted to the transformed segment in order to determine a radius of curvature of the curved segment.
Abstract: Embodiments of the invention relate generally to an ultraviolet (UV) cure chamber for curing a dielectric material disposed on a substrate and to methods of curing dielectric materials using UV radiation. A substrate processing tool according to one embodiment comprises a body defining a substrate processing region; a substrate support adapted to support a substrate within the substrate processing region; an ultraviolet radiation lamp spaced apart from the substrate support, the lamp configured to transmit ultraviolet radiation to a substrate positioned on the substrate support; and a motor operatively coupled to rotate at least one of the ultraviolet radiation lamp or substrate support at least 180 degrees relative to each other.
Type:
Grant
Filed:
March 15, 2007
Date of Patent:
September 15, 2009
Assignee:
Applied Materials, Inc.
Inventors:
Andrzei Kaszuba, Juan Carlos Rocha-Alvarez, Thomas Nowak, Sanjeev Baluja, Ndanka O. Mukuti
Abstract: The present invention generally comprises a method and apparatus for supplemental pumping, gas feed, and/or RF current for a process. When depositing amorphous silicon, the amount of process gases, RF current, and vacuum may be less than the amount of process gases, RF current, and vacuum necessary to deposit microcrystalline silicon. When a single chamber is used to deposit both amorphous and microcrystalline silicon, coupling a supplemental power supply, a supplemental gas source, and a supplemental vacuum pump to the chamber may be beneficial. The supplemental power supply, vacuum pump, and gas source, may be coupled with the chamber when the microcrystalline silicon is deposited and uncoupled when amorphous silicon is deposited. In a cluster tool arrangement, the supplemental power supply, vacuum pump, and gas source may serve multiple chambers that each deposit both amorphous and microcrystalline silicon.
Abstract: Methods and systems are provided for mapping substrates in a substrate carrier. The invention includes a substrate carrier including one or more windows; and an imaging system coupled to a substrate carrier handling robot and adapted to determine or image substrate positions in the substrate carrier via the one or more windows. Numerous other aspects are provided.
Type:
Application
Filed:
March 4, 2009
Publication date:
September 10, 2009
Applicant:
Applied Materials, Inc.
Inventors:
Vinay K. Shah, Sushant S. Koshti, Eric A. Englhardt