Patents Assigned to Applied Material
  • Patent number: 7570130
    Abstract: In certain embodiments, an apparatus for providing a fixed impedance transformation network for driving a plasma chamber includes a pre-match network adapted to couple between an Active RF match network and a plasma chamber load associated with the plasma chamber. The pre-match network includes (1) a first capacitive element; (2) an inductive element connected in parallel with the first capacitive element to form a parallel circuit that presents a stepped-up impedance to an output of the Active RF match network such that a voltage required to drive the plasma chamber load is reduced; and (3) a second capacitive element coupled to the parallel circuit and adapted to couple to the plasma chamber load. The second capacitive element reduces or cancels at least in part a reactance corresponding to an inductance associated with the plasma chamber load. Numerous other aspects are provided.
    Type: Grant
    Filed: July 11, 2005
    Date of Patent: August 4, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Carl A. Sorensen, John M. White, Suhail Anwar
  • Patent number: 7569501
    Abstract: Embodiments of the invention provide methods for forming hafnium materials, such as oxides and nitrides, by sequentially exposing a substrate to hafnium precursors and active oxygen or nitrogen species (e.g., ozone, oxygen radicals, or nitrogen radicals). The deposited hafnium materials have significantly improved uniformity when deposited by these atomic layer deposition (ALD) processes. In one embodiment, an ALD chamber contains an expanding channel having a bottom surface that is sized and shaped to substantially cover a substrate positioned on a substrate pedestal. During an ALD process for forming hafnium materials, process gases form a vortex flow pattern while passing through the expanding channel and sweep across the substrate surface. The substrate is sequentially exposed to chemical precursors that are pulsed into the process chamber having the vortex flow.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: August 4, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Craig R. Metzner, Shreyas S. Kher, Vidyut Gopal, Shixue Han, Shankarram A. Athreya
  • Patent number: 7569818
    Abstract: A method and apparatus for reducing or eliminating crosstalk between a plurality of electron beams is described. The plurality of electron beams may produce test areas on a large area substrate that are adjacent wherein secondary electrons from one test area may be detected in an adjacent test area. In one embodiment, the timing of a primary beam emission and detection of secondary electrons from that primary beam is controlled to eliminate or reduce the possibility of detection of secondary electrons from another primary beam.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: August 4, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Ralf Schmid, Thomas Schwedes
  • Patent number: 7569119
    Abstract: A technique and apparatus is disclosed for the optical monitoring and measurement of a thin film (or small region on a surface) undergoing thickness and other changes while it is rotating. An optical signal is routed from the monitored area through the axis of rotation and decoupled from the monitored rotating area. The signal can then be analyzed to determine an endpoint to the planarization process. The invention utilizes interferometric and spectrophotometric optical measurement techniques for the in situ, real-time endpoint control of chemical-mechanical polishing planarization in the fabrication of semiconductor or various optical devices. The apparatus utilizes a bifurcated fiber optic cable to monitor changes on the surface of the thin film.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: August 4, 2009
    Assignee: Applied Materials, Inc.
    Inventor: Wallace T. Y. Tang
  • Patent number: 7569134
    Abstract: Systems and methods for electrochemically processing a substrate. A contact element defines a substrate contact surface positionable in contact a substrate during processing. In one embodiment, the contact element comprises a wire element. In another embodiment the contact element is a rotating member. In one embodiment, the contact element comprises a noble metal.
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: August 4, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Paul Butterfield, Liang-Yuh Chen, Yongqi Hu, Antoine Manens, Rashid Mavliev, Stan Tsai
  • Patent number: 7569191
    Abstract: Embodiments of the invention provide a method and an apparatus for generating a gaseous chemical precursor for a processing system. In one embodiment, an apparatus for generating the gaseous chemical precursor used in a vapor deposition processing system is provided and includes a canister having a sidewall, a top, and a bottom encompassing an interior volume therein, an inlet port and an outlet port in fluid communication with the interior volume, and an inlet tube extending from the inlet port into the canister, wherein the inlet tube contains an outlet positioned to direct a gas flow away from the outlet port and towards the sidewall of the canister.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: August 4, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Seshadri Ganguli, Ling Chen, Vincent W. Ku
  • Patent number: 7571017
    Abstract: An Intelligent Data Multiplexer (“IDM”) can be used to interface a plurality of host computers with a semiconductor manufacturing tool. In one embodiment, the IDM has a plurality of host-side ports configured to receive messages from each of the host computers interfaced with the semiconductor manufacturing tool. The IDM also includes a multiplexer configured to multiplex the messages received from the host-side ports. To process possible conflict messages from the host computers, the IDM has a conflict resolve module. The messages are then delivered from the IDM to the semiconductor manufacturing tool through a tool-side port used to connect the semiconductor manufacturing tool to the IDM.
    Type: Grant
    Filed: November 7, 2003
    Date of Patent: August 4, 2009
    Assignee: Applied Materials, Inc.
    Inventor: Alexey G. Goder
  • Patent number: 7568495
    Abstract: Embodiments described herein provide ampoule assemblies to contain, store, or dispense chemical precursors. In one embodiment, an ampoule assembly is provided which includes an ampoule containing a first material layer disposed on the outside of the ampoule and a second material layer disposed over the first material layer, wherein the first material layer is thermally more conductive than the second material layer, an inlet line in fluid communication with the ampoule and containing a first manual shut-off valve disposed therein, an outlet line in fluid communication with the ampoule and containing a second manual shut-off valve disposed therein, and a first bypass line connected between the inlet line and the outlet line. In some embodiments, the ampoule assembly may contain disconnect fittings. In other embodiments, the first bypass line has a shut-off valve disposed therein to fluidly couple or decouple the input line and the outlet line.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: August 4, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Norman Nakashima, Christophe Marcadal, Seshadri Ganguli, Paul Ma, Schubert S. Chu
  • Patent number: 7569500
    Abstract: Methods of forming metal compounds such as metal oxides or metal nitrides by sequentially introducing and then reacting metal organic compounds with ozone one or with oxygen radicals or nitrogen radicals formed in a remote plasma chamber. The metal compounds have surprisingly and significantly improved uniformity when deposited by atomic layer deposition with cycle times of at least 10 seconds. The metal compounds also do not contain detectable carbon when the metal organic compound is vaporized at process conditions in the absence of solvents or excess ligands.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: August 4, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Craig R. Metzner, Shreyas S. Kher, Vidyut Gopal, Shixue Han, Shankarram A. Athreya
  • Patent number: 7569125
    Abstract: A one-piece inner shield usable in a plasma sputter reactor and extending from the target to the pedestal with a smooth inner surface and supported by an annular flange in a middle portion of the shield. The shield may be used to support the RF coil used in exciting the plasma. An outer shield includes an outwardly extending flange on its end alignable with the inner shield flange, holes in correspondence to recesses in the inner shield for standoffs for the RF coil, and circumferentially arranged gas flow holes.
    Type: Grant
    Filed: May 5, 2005
    Date of Patent: August 4, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Tza-Jing Gung, Xianmin Tang, John Forster, Peijun Ding, Marc Schweitzer, Keith A. Miller, Ilya Lavitsky
  • Patent number: 7569193
    Abstract: The present invention relates to systems and methods for controlled combustion of gaseous pollutants while reducing and removing deposition of unwanted reaction products from within the treatment systems. The systems employ a two-stage thermal reactor having an upper thermal reactor including at least one inlet for mixing a gaseous waste stream with oxidants and combustible fuels for thermal combustion within the upper thermal reactor. The upper thermal reactor further includes a double wall structure having an outer exterior wall and an interior porous wall that defines an interior space for holding a fluid and ejecting same, in a pulsating mode, through the interior porous wall into the upper thermal reactor to reduce deposition of the reaction products on the interior of the upper reactor chamber.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: August 4, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Shawn Ferron, John Kelly, Robbert Vermeulen
  • Patent number: 7569462
    Abstract: The present invention provides a method of recrystallizing a silicon sheet, and in particular recrystallizing a small grained silicon sheet to improve material properties such as grain size and orientation. According to one aspect, the method includes using rapid thermal processing (RTP) to melt and recrystallize one or more entire silicon sheet(s) in one heating sequence. According to another aspect, the method includes directionally controlling a temperature drop across the thickness of the sheet so as to facilitate the production of a small number of nuclei in the melted material and their growth into large grains. According to a further aspect, the invention includes a re-crystallization chamber in an overall process flow that enables high-throughput processing of silicon sheets having desired properties for applications such as photovoltaic modules.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: August 4, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Virendra V. Rana, Robert Z. Bachrach
  • Publication number: 20090191327
    Abstract: A strip coating system includes a first pulley carrying a flexible metal or Al substrate wound up on the first pulley. A second, take-up, pulley is provided for taking up the coated substrate. The coating process is a continuous coating process, during which the first pulley and the second pulley are rotated to move the substrate continuously past a coating tool for depositing coating particles on a surface of the substrate. After having passed the coating section with a speed v, the substrate carrying a coating layer on the surface thereof passes an infrared spectroscopic measurement device for measuring the layer thickness of the coating layer. Feedback controls are provided to control one or more process parameters of the coating tool responsive to the measurement of the thickness of the coating layer detected by the measurement tool. Thus, an in situ online measurement of the thickness of the coating layer may be implemented.
    Type: Application
    Filed: November 24, 2008
    Publication date: July 30, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Hans-Georg Lotz, Peter Sauer
  • Patent number: 7566850
    Abstract: A method and apparatus for welding polymer components by forming a groove along a surface of a polymer part to be welded, placing a conductive member in the groove, heating the conductive member to a first temperature for a first period, allowing the parts to cool for a second period to form a weldment, heating the conductive member to a second temperature for a third period, and removing the conductive member from the weldment.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: July 28, 2009
    Assignee: Applied Materials, Inc.
    Inventor: Victor Mimken
  • Patent number: 7566655
    Abstract: A process flow integration scheme employs one or more techniques to control stress in a semiconductor device formed thereby. In accordance with one embodiment, cumulative stress contributed by RTP of a nitride spacer and polysilicon gate, and subsequent deposition of a high stress etch stop layer, enhance strain and improve device performance. Germanium may be deposited or implanted into the gate structure in order to facilitate stress control.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: July 28, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Mihaela Balseanu, Jia Lee, Mei-Yee Shek, Amir Al-Bayati, Li-Qun Xia, Hichem M'Saad
  • Patent number: 7566891
    Abstract: Embodiments of the invention relate generally to an ultraviolet (UV) cure chamber for curing a dielectric material disposed on a substrate and to methods of curing dielectric materials using UV radiation. A substrate processing tool according to one embodiment comprises a body defining a substrate processing region; a substrate support adapted to support a substrate within the substrate processing region; an ultraviolet radiation lamp spaced apart from the substrate support, the lamp configured to transmit ultraviolet radiation to a substrate positioned on the substrate support; and a motor operatively coupled to rotate at least one of the ultraviolet radiation lamp or substrate support at least 180 degrees relative to each other.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: July 28, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Juan Carlos Rocha-Alvarez, Thomas Nowak, Dale R. Du Bois, Sanjeev Baluja, Scott A. Hendrickson, Dustin W. Ho, Andrzei Kaszuba, Tom K. Cho
  • Patent number: 7566900
    Abstract: Embodiments of an apparatus and method of monitoring and controlling a large area substrate processing chamber are provided. Multiple types of metrology tools can be installed in the substrate processing system to measure film properties after substrate processing in a processing chamber. Several number of a particular type of metrology tools can also be installed in the substrate processing system to measure film properties after substrate processing in a processing chamber. The metrology tools can be installed in a metrology chamber, a process chamber, a transfer chamber, or a loadlock.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: July 28, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Hienminh Huu Le, Akihiro Hosokawa
  • Publication number: 20090185186
    Abstract: Systems, methods and apparatus for manufacturing color filters for flat panel displays are provided that include an inkjet printing system integrated with a light transmittance measurement system. The inkjet printing system includes a stage for supporting and moving a substrate past inkjet print heads adapted to deposit ink in pixel wells on the substrate. The light transmittance measurement system includes a sensor and a light source disposed on opposite sides of the substrate and adapted to determine the thickness of the ink deposited on the substrate. The light source is adapted to move with the sensor to allow different pixel wells containing deposited ink to be measured, and the stage includes at least one optical path to allow light from the light source to pass through the deposited ink to the sensor.
    Type: Application
    Filed: December 6, 2008
    Publication date: July 23, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Quanyuan Shang, John M. White
  • Patent number: 7563680
    Abstract: A method of fabricating a semiconductor device includes providing a region having doped silicon region on a substrate, and forming a silicon germanium material adjacent to the region on the substrate. A stressed silicon nitride layer is formed over at least a portion of the doped silicon region on the substrate. The silicon germanium layer and stressed silicon nitride layer induce a stress in the doped silicon region of the substrate. In one version, the semiconductor device has a transistor with source and drain regions having the silicon germanium material, and the doped silicon region forms a channel that is configured to conduct charge between the source and drain regions. The stressed silicon nitride layer is formed over at least a portion of the channel, and can be a tensile or compressively stressed layer according the desired device characteristics.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: July 21, 2009
    Assignee: Applied Materials, Inc.
    Inventor: Reza Arghavani
  • Patent number: 7562672
    Abstract: An ampoule assembly is configured with a bypass line and valve to allow the purging of the lines and valves connected to the ampoule. The ampoule assembly, in one embodiment, includes an ampoule, an inlet line, an outlet line, and a bypass line connected between the inlet line and the outlet line, the bypass line having a shut-off valve disposed therein to fluidly couple or decouple the inlet line and the outlet line. The shut-off valve disposed in the bypass line may be remotely controllable. Also, additional remotely controllable shut-off valves may be provided in the inlet and the outlet lines.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: July 21, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Norman Nakashima, Christophe Marcadal, Seshadri Ganguli, Paul Ma, Schubert S. Chu