Patents Assigned to Applied Material
  • Patent number: 7576007
    Abstract: Aspects of the present invention include a method and an apparatus that may be utilized to reduce dishing and improve cleaning efficiency of a material layer residue (e.g., copper residual) by varying a substrate potential in a substrate processing system. For example, by utilizing multiple polishing steps and applying different voltages (e.g., while a substrate is being in a polishing station), ECMP can be used to effectively reduce dishing and it can be used to enhance copper residual cleaning as well as minimizing a possibility of arcing, which can occur at the end of the polishing process, when a substrate is moved from a polishing station.
    Type: Grant
    Filed: January 9, 2006
    Date of Patent: August 18, 2009
    Assignee: Applied Materials, Inc.
    Inventors: You Wang, Zhihong Wang, Renhe Jia, Stan D. Tsai, Yongqi Hu
  • Patent number: 7575982
    Abstract: Methods are provided of fabricating compound nitride semiconductor structures. A group-III precursor and a nitrogen precursor are flowed into a processing chamber to deposit a first layer over a surface of a first substrate with a thermal chemical-vapor-deposition process. A second layer is deposited over a surface of a second substrate with the thermal chemical-vapor-deposition process using the first group-III precursor and the first nitrogen precursor. The first and second substrates are different outer substrates of a plurality of stacked substrates disposed within the processing chamber as a stack so that the first and second layers are deposited on opposite sides of the stack. Deposition of the first layer and deposition of the second layer are performed simultaneously.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: August 18, 2009
    Assignee: Applied Materials, Inc.
    Inventors: David Bour, Sandeep Nijhawan, Lori Washington, Jacob Smith, David Eaglesham
  • Publication number: 20090199901
    Abstract: The present invention refers to a method of producing a photovoltaic device having at least one semiconductor unit comprising the following steps: a cleaning of at least one surface of the semiconductor unit by etching; drying of the at least one surface of the semiconductor unit in a substantially oxygen-free or oxygen-depleted environment; and depositing of a passivation layer on the at least one surface as well as to a device for carrying out such a method and to photovoltaic devices produced by this method.
    Type: Application
    Filed: February 8, 2008
    Publication date: August 13, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Roland Trassl, Sven Schramm, Winfried Wolke, Jan Catoir
  • Publication number: 20090199767
    Abstract: The invention relates to a vacuum treatment plant comprising an evaporator (1) for vacuum coating facilities. The evaporator (1) according to the invention comprises a device for guiding a supply line (4) movable in a gripping direction (A) and intended for gripping and positioning an evaporation boat (3) having a base (22) and further comprises two spacers (18, 19) which the movable supply line (4) flexibly connects to the base (22), with the spacers (18, 19) being disposed on one side each with the movable supply line (4) and with the other side on the base (22), thus enabling the first supply line (4) to be forcibly guided, and with the spacers (18, 19) having such a length and configuration between the first supply line (4) and the base (22) that the guidance direction (B) is essentially parallel to the gripping direction (A) at least across a small deflection range of the spacers (18, 19).
    Type: Application
    Filed: July 27, 2005
    Publication date: August 13, 2009
    Applicant: Applied Materials GmbH & Co. KG
    Inventors: Stefan Hein, Wolfgang Klein
  • Patent number: 7572052
    Abstract: The present invention provides a non-destructive method for monitoring and calibrating chamber temperature. One embodiment of the present invention provides a method for measuring temperature comprising forming a target film on a test substrate at a first temperature, wherein the target film has one or more properties responsive to thermal exposure, exposing the target film to an environment at a second temperature in a range higher than the first temperature, measuring the one or more properties of the target film after exposing the target film to the environment at the second temperature, and determining the second temperature according to the measured one or more properties.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: August 11, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Jallepally Ravi, Maitreyee Mahajani, Yi-Chiau Huang
  • Patent number: 7572734
    Abstract: The etch depth during trench over via etch of a dual damascene structure in a dielectric film stack is controlled to be the same over the dense area and the open area of a substrate and solve micro-loading problems. The trench etch process is adapted to include a forward micro-loading etching process and a reverse micro-loading etching process using two etch chemistries together with the inclusion of a dopant material layer or an organic fill material layer during the deposition of the dielectric film stack. In one embodiment, etching of trenches over vias is switched from forward micro-loading to reverse micro-loading once etching of the dielectric film stack is reached at a predetermined location of a dopant material layer. In another embodiment, etching of an organic trench filling material layer is performed in a reverse micro-loading process followed by etching the dielectric film stack in a forward micro-loading process.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: August 11, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Mehul Naik, Suketu A. Parikh, Michael D. Armacost
  • Patent number: 7572337
    Abstract: Apparatus and methods for distributing gases into a processing chamber are disclosed. In one embodiment, the apparatus includes a gas distribution plate having a plurality of apertures disposed therethrough and a blocker plate having both a plurality of apertures disposed therethrough and a plurality of feed through passageways disposed therein. A first gas pathway delivers a first gas through the plurality of apertures in the blocker plate and the gas distribution plate. A bypass gas pathway delivers a second gas through the plurality of feed through passageways in the blocker plate and to areas around the blocker plate prior to the second gas passing through the gas distribution plate.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: August 11, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Juan Carlos Rocha-Alvarez, Ganesh Balasubramanian, Tom K. Cho, Deenesh Padhi, Thomas Nowak, Bok Hoen Kim, Hichem M'Saad, Daemian Raj
  • Patent number: 7572340
    Abstract: A device for adjusting a spacing between a chamber body such as a chamber body and a leveling plate such as a leveling plate comprises a mounting stud configured to be mounted to the chamber body. The mounting stud includes a stud threaded surface. A bushing is capable of being fixed to the leveling plate, and includes a bushing threaded surface. An adjustment screw has a first threaded surface threadingly engaged with the stud threaded surface of the mounting stud, and a second threaded surface threadingly engaged with the bushing threaded surface of the bushing. The threaded surfaces are configured, when the bushing is fixed to the leveling plate and the adjustment screw is turned, to cause the adjustment screw to move in a first direction with respect to the mounting stud at a first rate and the bushing to move in a second direction opposite from the first direction with respect to the adjustment screw at a second rate which is different from the first rate.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: August 11, 2009
    Assignee: Applied Materials, Inc.
    Inventor: Kirby Floyd
  • Patent number: 7572647
    Abstract: A coil is provided for use in a semiconductor processing system to generate a plasma with a magnetic field in a chamber. The coil comprises a first coil segment, a second coil segment and an internal balance capacitor. The first coils segment has a first end and a second end. The first end of the coil segment is adapted to connect to a power source. The second coil segment has a first and second end. The second end of the first coil segment is adapted to connect to an external balance capacitor. The internal balance capacitor is connected in series between the second end of the first coil segment and the first end of the second coil segment. The internal balance capacitor and the coil segments are adapted to provide a voltage peak along the first coil segment substantially aligned with a virtual ground along the second coil segment.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: August 11, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Robert Chen, Canfeng Lai, Xinglong Chen, Weiyi Luo, Zhong Qiang Hua, Siqing Lu, Muhammad Rasheed, Qiwei Liang, Dmitry Lubomirsky, Ellie Y. Yieh
  • Patent number: 7572715
    Abstract: In one example, a method of epitaxially forming a silicon-containing material on a substrate surface is presented which includes positioning a substrate into a process chamber. The substrate has a monocrystalline surface and at least a second surface, such as an amorphous surface and/or a polycrystalline surface. The substrate is exposed to a deposition gas to deposit an epitaxial layer on the monocrystalline surface and a polycrystalline layer on the second surface. The deposition gas preferably contains a silicon source and at least a second elemental source, such as a germanium source, a carbon source and/or combinations thereof. Thereafter, the method further provides exposing the substrate to an etchant gas to etch the polycrystalline layer and the epitaxial layer in a manner such that the polycrystalline layer is etched at a faster rate than the epitaxial layer.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: August 11, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Yihwan Kim, Arkadii V. Samoilov
  • Patent number: 7572334
    Abstract: A method and apparatus for forming a semiconductor sheet suitable for use as a solar cell by depositing an array of solidified drops of a feed material on a sheet support. The desired properties of the sheet fabricated with the teaching of this invention are: flatness, low residual stress, minority carrier diffusion length greater than 40 microns, and minimum grain dimension at least two times the minority carrier diffusion length. In one embodiment, the deposition chamber is adapted to form and process sheets that have a surface area of about 1,000-2,400 cm2.
    Type: Grant
    Filed: January 3, 2006
    Date of Patent: August 11, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Arnold V. Kholodenko, Robert Z. Bachrach, Mark Mandelboym
  • Patent number: 7573051
    Abstract: The present invention relates to a guide tube for an ion beam in an ion implanter located adjacent a semiconductor wafer. Such guide tubes are provided to confine charged particles used for wafer neutralisation during implantation. According to the invention, a guide tube comprises an axis, open ends to receive an ion beam along said axis, a tube wall substantially parallel with said axis, and at least one opening through the tube wall forming a gas conduction passage from inside to outside the guide tube, said passage having a length aligned at an acute angle to said guide tube axis and a minimum dimension transverse to said length such that a line of sight through the passage perpendicular to said guide tube axis is substantially occluded.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: August 11, 2009
    Assignee: Applied Materials, Inc.
    Inventor: Richard D. Goldberg
  • Patent number: 7571698
    Abstract: A substrate processing system has a housing that defines a process chamber. A substrate holder disposed within the process chamber supports a substrate during substrate processing. A gas-delivery system introduces a gas into the process chamber. A pressure-control system maintains a selected pressure within the process chamber. A high-density plasma generating system forms a plasma having a density greater than 1011 ions/cm3 within the process chamber. A radio-frequency bias system generates an electrical bias on the substrate at a frequency less than 5 MHz. A controller controls the gas-delivery system, the pressure-control system, the high-density plasma generating system, and the radio-frequency bias system.
    Type: Grant
    Filed: January 10, 2005
    Date of Patent: August 11, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Rongping Wang, Canfeng Lai, Yuri Trachuk, Siamak Salimian
  • Publication number: 20090196487
    Abstract: A method and system are presented for evaluating a variation of a parameter of a pattern, the method includes: processing data indicative of an aerial intensity image of at least a portion of a patterned article, and determining values of a certain functional of the aerial image intensity for predetermined regions within said at least portion of the patterned article, said values of the aerial image intensity functional being indicative of a variation of at least one parameter of the pattern within said at least portion of the patterned article or of a variation of at least one parameter of a pattern manufactured by utilizing the patterned article.
    Type: Application
    Filed: February 1, 2007
    Publication date: August 6, 2009
    Applicant: Applied Materials Israel LTD
    Inventors: Michael Ben Yishai, Mark Wagner, Avishai Bartov, Gadi Greenberg, Lior Shoval, Ophir Gvirtzer
  • Publication number: 20090197010
    Abstract: In a plasma reactor, RF bias power is applied from an RF bias power generator to a disk-shaped electrode underlying and insulated from a workpiece and having a circumferential edge underlying a circumferential edge of the workpiece. The RF bias power is sufficient to produce a high RF bias voltage on the workpiece on the order of 0.5-20 kV. Non-uniformity in distribution of plasma across the workpiece is reduced by providing a curvature in a peripheral edge annulus of said electrode whereby the peripheral annulus slopes away from the workpiece support surface. The peripheral edge annulus corresponds to a small fraction of an area of said electrode. The remainder of the electrode encircled by the peripheral annulus has a flat shape.
    Type: Application
    Filed: February 6, 2008
    Publication date: August 6, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Peter I. Porshnev, Majeed A. Foad
  • Publication number: 20090196584
    Abstract: An evaporation crucible is described. The evaporation crucible (100; 300; 400; 500) includes: an electrically conductive body (120) and a cover (150; 550); the body having a first electrical connection (162) and a second electrical connection (164) for applying a heating current through the body, the body includes a chamber (130) providing a melting-evaporation area, the chamber including a chamber bottom and a chamber wall, wherein the cover forms an enclosure with the chamber; a feeding opening (134; 430) for feeding a material; and a distributor orifice (170; 571, 572) providing a vapor outlet of the enclosure.
    Type: Application
    Filed: March 6, 2008
    Publication date: August 6, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Holger Aulbach, Helmut Grimm
  • Publication number: 20090197401
    Abstract: Plasma immersion ion implantation employing a very high RF bias voltage on an electrostatic chuck to attain a requisite implant depth profile is carried out by first depositing a partially conductive silicon-containing seasoning layer over the interior chamber surfaces prior to wafer introduction.
    Type: Application
    Filed: February 6, 2008
    Publication date: August 6, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Shijian Li, Kartik Ramaswamy, Hiroji Hanawa, Seon-Mee Cho, Biagio Gallo, Dongwon Choi, Majeed A. Foad
  • Publication number: 20090194027
    Abstract: The present invention refers to a coating device for coating of substrates comprising at least two process chambers (1, 2, 3, 4) being disposed adjacent to each other, a separating plate (9) between the two adjacent process chambers, and pumping means (12, 13) for evacuating the process chambers, wherein the separating plate (9) comprises a conduit having at least two ends, one end of which is connected with the pumping means and the other end has at least one suction opening for at least one of the process chambers.
    Type: Application
    Filed: February 1, 2008
    Publication date: August 6, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Oliver Heimel, Hans Wolf, Joerg Krempel-Hesse, Frank Fuchs
  • Patent number: 7569502
    Abstract: A SiOxNy gate dielectric and a method for forming a SiOxNy gate dielectric by heating a structure comprising a silicon oxide film on a silicon substrate in an atmosphere comprising NH3 and then exposing the structure to a plasma comprising a nitrogen source are provided. In one aspect, the structure is annealed after it is exposed to a plasma comprising a nitrogen source. In another aspect, a SiOxNy gate dielectric is formed in an integrated processing system by heating a structure comprising a silicon oxide film on a silicon substrate in an atmosphere comprising NH3 in one chamber of the integrated processing system and then exposing the structure to a plasma comprising a nitrogen source in another chamber of the integrated processing system.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: August 4, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Christopher Olsen, Faran Nouri, Thai Cheng Chua
  • Patent number: 7569463
    Abstract: The present invention generally describes one or more apparatuses and various methods that are used to perform an annealing process on desired regions of a substrate. In one embodiment, an amount of energy is delivered to the surface of the substrate to preferentially melt certain desired regions of the substrate to remove unwanted damage created from prior processing steps (e.g., crystal damage from implant processes), more evenly distribute dopants in various regions of the substrate, and/or activate various regions of the substrate. The preferential melting processes will allow more uniform distribution of the dopants in the melted region, due to the increased diffusion rate and solubility of the dopant atoms in the molten region of the substrate. The creation of a melted region thus allows: 1) the dopant atoms to redistribute more uniformly, 2) defects created in prior processing steps to be removed, and 3) regions that have hyper-abrupt dopant concentrations to be formed.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: August 4, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Ajit Balakrishna, Paul Carey, Dean Jennings, Abhilash Mayur, Stephen Moffatt, William Schaffer, Mark Yam