Patents Assigned to Applied Material
  • Patent number: 7465357
    Abstract: The present invention is a method and apparatus for cleaning a chemical vapor deposition (CVD) chamber using cleaning gas energized to a plasma in a gas mixing volume separated by an electrode from a reaction volume of the chamber. In one embodiment, a source of RF power is coupled to a lid of the chamber, while a switch is used to couple a showerhead to ground terminals or the source of RF power.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: December 16, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Maosheng Zhao, Juan Carlos Rocha-Alvarez, Inna Shmurun, Soova Sen, Mao D. Lim, Shankar Venkataraman, Ju-Hyung Lee
  • Publication number: 20080302653
    Abstract: The present invention relates to a method for producing an anti-reflection and/or passivation coating for solar cells. The method may include the steps of providing a silicon wafer in a deposition chamber, pre-heating said silicon wafer to a temperature above 400° C. and deposition of a hydrogen containing anti-reflection and/or passivation coating by a sputter process. A coating apparatus is also provided for producing solar cells, especially anti-reflection and/or passivation coatings on Si wafers, comprising a first vacuum chamber, a second vacuum chamber and conveying means for transporting a substrate through said first and second vacuum chambers. The first vacuum chamber comprising at least one infrared radiation heater with a heater filament that has a temperature between 1800° C. and 3000° C. The second vacuum chamber comprising sputter means for vaporization of a target as well as a gas inlet for introducing a reactive gas including hydrogen.
    Type: Application
    Filed: March 11, 2008
    Publication date: December 11, 2008
    Applicant: Applied Materials Inc.
    Inventors: Roland Trassl, Sven Schramm, Thomas Hegemann
  • Patent number: 7463351
    Abstract: An optical system for detecting defects on a wafer that includes a device for producing a beam and directing the beam onto the wafer surface, producing an illuminated spot on the wafer's surface. The system further includes a detector detecting light, and a mirrored assembly having together with the detector an axis of symmetry about a line perpendicular to the wafer surface. The assembly is configured to receive scattered light from the surface, where the scattered light including a first scattered light part being scattered from the pattern. The assembly is further configured to reflect and focus rotationally symmetrically about the axis of symmetry the scattered light to the detector. The system further includes a device operating with the detector for facilitating detection of a scattered light other than the specified scattered light due to pattern.
    Type: Grant
    Filed: January 11, 2005
    Date of Patent: December 9, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Gilad Almogy, Ron Naftali, Avishay Guetta, Doron Shoham
  • Patent number: 7461794
    Abstract: A method and apparatus for regulating the temperature of substrates positioned within a chamber are provided. In one embodiment, a substrate support pin is provided that includes a body having a substrate support region defined at a first end and a mounting region defined at a second end of the body. A mounting feature is formed at the mounting region and is adapted to couple the body to a vacuum chamber body. A passage extends from the mounting region to the support region. An outlet formed through the body and orientated at an angle greater than zero relative to a centerline of the body is p provided to deliver fluids flowing through the passage out the first end of the body. In another embodiment, a chamber includes a pin configured to provide a temperature controlled fluid to an underside of a substrate supported on the pin.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: December 9, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Hien-Minh Huu Le, Michael T. Starr
  • Patent number: 7463352
    Abstract: A method and apparatus for reducing speckle during inspection of articles used in the manufacture of semiconductor devices, including wafers, masks, photomasks, and reticles. The coherence of a light beam output by a coherent light source, such as a pulsed laser, is reduced by disposing elements in a light path. Examples of such elements include optical fiber bundles; optical light guides; optical gratings; an integrating sphere; and an acousto-optic modulator. These various elements may be combined as desired, such that light beams output by the element combinations have optical path length differences that are greater than a coherence length of the light beam output by the coherent light source.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: December 9, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Avner Karpol, Silviu Reinhorn, Emanuel Elysaf, Shimon Yalov, Boaz Kenan
  • Publication number: 20080298945
    Abstract: Methods and apparatus are provided for the use of a dual Selective Compliant Assembly Robot Arm (SCARA) robot. In some embodiments two SCARAs are provided, each including an elbow joint, wherein the two SCARAs are vertically stacked such that one SCARA is a first arm and the other SCARA is a second arm, and wherein the second arm is adapted to support a first substrate, and the first arm is adapted to extend to a full length when the second arm supports the first substrate, and wherein the first substrate supported by the second arm is coplanar with the elbow joint of the first arm, and the second arm is further adapted to move concurrently in parallel (and/or in a coordinated fashion) with the first arm a sufficient amount to avoid interference between the first substrate and the elbow joint of the first arm. Numerous other embodiments are provided.
    Type: Application
    Filed: May 29, 2008
    Publication date: December 4, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Damon Keith Cox, Marvin L. Freeman, Jason M. Schaller, Jeffrey C. Hudgens, Jeffrey A. Brodine
  • Publication number: 20080296594
    Abstract: Nitride optoelectronic devices that have asymmetric double-sided structures and methods fabricating such structures are disclosed. Two n-type III-N layers are formed simultaneously over opposite sides of a substrate with substantially the same composition. Thereafter, a p-type III-N active layer is formed over one of the n-type III-N layers but not over the other.
    Type: Application
    Filed: July 15, 2008
    Publication date: December 4, 2008
    Applicant: Applied Materials, Inc.
    Inventors: David Bour, Jacob Smith, Jie Su, Sandeep Nijhawan
  • Publication number: 20080299775
    Abstract: Methods are disclosed for depositing a silicon oxide film on a substrate disposed in a substrate processing chamber. The substrate has a gap formed between adjacent raised surfaces. A silicon-containing gas, an oxygen-containing gas, and a fluent gas are flowed into the substrate processing chamber. A high-density plasma is formed from the silicon-containing gas, the oxygen-containing gas, and the fluent gas. A first portion of the silicon oxide film is deposited using the high-density plasma at a deposition rate between 900 and 6000 ?/min and with a deposition/sputter ratio greater than 30. The deposition/sputter ratio is defined as a ratio of a net deposition rate and a blanket sputtering rate to the blanket sputtering rate. Thereafter, a portion of the deposited first portion of the silicon oxide film is etched. A second portion of the silicon oxide film is deposited over the etched portion of the silicon oxide film.
    Type: Application
    Filed: June 4, 2007
    Publication date: December 4, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Anchuan Wang, Young S. Lee, Manoj Vellaikal, Jason Thomas Bloking, Jin Ho Jeon, Hemant P. Mungekar
  • Publication number: 20080295773
    Abstract: A substrate support for supporting a substrate in a processing chamber comprises a frame for carrying the substrate, at least a first fastening means fixedly attached to the frame for aligning the substrate relative to the frame, and at least a second fastening means movably attached to the frame, the second fastening means being movable relative to the frame and/or the substrate. Furthermore, a processing device comprises an edge exclusion projecting over a portion of the surface of the substrate in order to prevent processing of the portion of the surface of the substrate. A part of the edge exclusion may be moved into a gap between the edge(s) of the substrate and the frame element of the substrate support to form a labyrinth seal between the frame element and the edge of the substrate. A method of placing the substrate on the substrate support is also disclosed.
    Type: Application
    Filed: April 23, 2008
    Publication date: December 4, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Dieter Haas, Thomas Berger, Simon Lau
  • Patent number: 7459057
    Abstract: A retainer is used with an apparatus for polishing a substrate. The substrate has upper and lower surfaces and a lateral, substantially circular, perimeter. The apparatus has a polishing pad with an upper polishing surface for contacting and polishing the lower face of the substrate. The retainer has an inward facing retaining face for engaging and retaining the substrate against lateral movement during polishing of the substrate. The retaining face engages a substrate perimeter at more than substantially a single discrete circumferential location along the perimeter.
    Type: Grant
    Filed: July 18, 2002
    Date of Patent: December 2, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Steven M. Zuniga, Hung Chih Chen
  • Patent number: 7460267
    Abstract: Green inks for displays are provided. In one aspect, the green inks include one or more green organic pigments, one or more monomers, one or more polymeric dispersants, and one or more organic solvents. In another aspect, the green inks include one or more green organic pigments, one or more yellow pigments, one or more monomers, one or more oligomers, one or more polymeric dispersants, and one or more organic solvents. Methods of forming displays that include dispensing the green inks by inkjetting onto a substrate and displays that include the green inks are also provided.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: December 2, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Lizhong Sun, Quanyuan Shang, John M. White
  • Patent number: 7459003
    Abstract: A space-conserving integrated fluid delivery system which is particularly useful for gas distribution in semiconductor processing equipment. The invention pertains to a diffusion bonded integrated fluid flow network architecture, which includes, in addition to a layered substrate containing fluid flow channels, an in-line filter and may include various fluid handling and monitoring components. The integrated fluid delivery system that is formed from a layered substrate is diffusion bonded, and the various fluid handling and monitoring components may be partially integrated or fully integrated into the substrate, depending on design and material requirements.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: December 2, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Mark Crockett, John W. Lane, Micahel DeChellis, Chris Melcer, Erica Porras, Aneesh Khullar, Balarabe N. Mohammed
  • Patent number: 7459056
    Abstract: In a first aspect, a first apparatus is provided for a chemical mechanical polishing (CMP) process. The first apparatus includes (1) a rotatable member; (2) an end effector adapted to receive and retain a conditioning disk; and (3) an elastic device disposed between the rotatable member and the end effector. The elastic device is (a) adapted to rotate the end effector via a torque from the rotatable member, and (b) flexibly extensible so as to impart a force to the end effector while permitting the end effector to deviate from a perpendicular alignment with the rotatable member in order for a conditioning surface of the conditioning disk to conform to an irregular polishing surface of a pad being conditioned. Numerous other aspects are provided, including methods and apparatus for using liquid or gas to deter polishing slurry or debris from entering the conditioning head.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: December 2, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Alexander S Polyak, Avi Tepman
  • Patent number: 7459319
    Abstract: A method and apparatus for testing and characterizing features formed on a substrate. In one embodiment, a test structure is provided that includes a test element having a first side and an opposing second side. A first set of one or more structures defining a first region having a first local density are disposed adjacent the first side of the test element. A second set of one or more structures defining a second region having a second local density are disposed adjacent the second side of the test element. A third set of one or more structures defining a third region having a first global density are disposed adjacent the first region. A fourth set of one or more structures defining a fourth region having a second global density are disposed adjacent the second region.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: December 2, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Michael C. Smayling, Susie Xiuru Yang, Michael P. Duane
  • Patent number: 7459404
    Abstract: Methods are provided for processing a substrate for depositing an adhesion layer having a low dielectric constant between two low k dielectric layers. In one aspect, the invention provides a method for processing a substrate including introducing an organosilicon compound and an oxidizing gas at a first ratio of organosilicon compound to oxidizing gas into the processing chamber, generating a plasma of the oxidizing gas and the organosilicon compound to form an initiation layer on a barrier layer comprising at least silicon and carbon, introducing the organosilicon compound and the oxidizing gas at a second ratio of organosilicon compound to oxidizing gas greater than the first ratio into the processing chamber, and depositing a first dielectric layer adjacent the dielectric initiation layer.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: December 2, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Lihua Li, Tzu-Fang Huang, Jerry Sugiarto, legal representative, Li-Qun Xia, Peter Wai-Man Lee, Hichem M'Saad, Zhenjiang Cui, Sohyun Park, Dian Sugiarto
  • Patent number: 7460221
    Abstract: System for scanning a surface, comprising a light source producing an illuminating light beam; an objective lens assembly, located between the light source and the surface; a plurality of interchangeable telescopes, a selected one of the interchangeable telescopes being located between the light source and the objective lens assembly; and at least one light detector, wherein at least one of the light detectors detects at least a portion of a reflected light beam, reflected from the surface and received from the selected telescope.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: December 2, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Boris Goldberg, Ron Naftali
  • Patent number: 7458335
    Abstract: A magnetic field-enhanced plasma reactor is disclosed, comprising a reaction chamber for applying a plasma to a substrate, a plurality of primary electromagnets disposed about said reaction chamber, and a plurality of secondary electromagnets. At least two of the primary electromagnets are adjacent to each other, and each of these primary electromagnets has at least one secondary electromagnet disposed within a region defined by a right rectangular prism having the largest perimeter that fits within the outer perimeter of the primary magnet. Typically, at least one of the secondary electromagnets in one of the at least two adjacent primary electromagnets is itself adjacent to a secondary electromagnet disposed in the other of the at least two adjacent primary electromagnets. This arrangement is found to eliminate non-uniformities observed at regions of the substrate which are disposed closest to the vertices formed by the adjacent primary electromagnets.
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: December 2, 2008
    Assignee: Applied Materials, Inc.
    Inventor: Claes H. Bjorkman
  • Patent number: 7459380
    Abstract: In accordance with the present invention, improved methods for reducing the dislocation density of nitride epitaxial films are provided. Specifically, an in-situ etch treatment is provided to preferentially etch the dislocations of the nitride epitaxial layer to prevent threading of the dislocations through the nitride epitaxial layer. Subsequent to etching of the dislocations, an epitaxial layer overgrowth is performed. In certain embodiments, the etching of the dislocations occurs simultaneously with growth of the epitaxial layer. In other embodiments, a dielectric mask is deposited within the etch pits formed at the dislocations prior to the epitaxial layer overgrowth.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: December 2, 2008
    Assignee: Applied Materials, Inc.
    Inventors: David Bour, Sandeep Nijhawa, Jacob Smith, Lori Washington
  • Patent number: 7459405
    Abstract: Embodiments of the present invention provide methods, apparatuses, and devices related to chemical vapor deposition of silicon oxide. In one embodiment, a single-step deposition process is used to efficiently form a silicon oxide layer exhibiting high conformality and favorable gap-filling properties. During a pre-deposition gas flow stabilization phase and an initial deposition stage, a relatively low ratio of silicon-containing gas:oxidant deposition gas is flowed, resulting in formation of highly conformal silicon oxide at relatively slow rates. Over the course of the deposition process step, the ratio of silicon-containing gas:oxidant gas is increased, resulting in formation of less-conformal oxide material at relatively rapid rates during later stages of the deposition process step.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: December 2, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Nitin K. Ingle, Xinyua Xia, Zheng Yuan
  • Publication number: 20080289167
    Abstract: A method for operating one or more electronic device manufacturing systems is provided, including the steps 1) performing a series of electronic device manufacturing process steps with a process tool, wherein the process tool produces effluent as a byproduct of performing the series of process steps; 2) abating the effluent with an abatement tool; 3) supplying an abatement resource to the abatement tool from a first abatement resource supply; 4) changing an abatement resource supply from the first abatement resource supply to a second abatement resource supply, wherein changing the abatement resource supply comprises: i) interrupting a flow of the abatement resource from the first abatement resource supply; and ii) beginning a flow of the abatement resource from the second abatement resource supply; and 5) continuing to perform the series of process steps with the process tool, while changing, and after changing, the abatement resource supply.
    Type: Application
    Filed: May 25, 2008
    Publication date: November 27, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Phil Chandler, Daniel O. Clark, Robbert M. Vermeulen, Jay J. Jung, Roger M. Johnson, Youssef A. Loldj, James L. Smith