Patents Assigned to Applied Material
  • Patent number: 7446474
    Abstract: A photocathode is capable of generating an electron beam from incident light. The photocathode comprises a light permeable support having a light receiving surface and an opposing surface. A Group III nitride layer is provided on the opposing surface of the support. The Group III nitride layer comprises at least one Group III element and nitrogen. An alkali halide layer is provided on the Group III nitride layer. The alkali halide can be a cesium halide, such as cesium bromide or iodide.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: November 4, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Juan Ramon Maldonado, Francisco J. Machuca, Steven T. Coyle
  • Patent number: 7446366
    Abstract: A method for void free filling with in-situ doped amorphous silicon of a deep trench structure is provided in which a first fill is carried out in at a temperature, pressure and dopant to silane ratio such that film deposition occurs from the bottom of the trench upwards. By way of this first fill, step coverages well in excess 100% are achieved. In the second fill step, deposition is carried out under changed conditions so as to reduce the impact of dopant on deposition rate, whereby trench fill is completed at a deposition rate which exceeds the deposition rate of the first fill. In an application of this method to the formation of deep trench capacitor structures, the intermediate steps further including the capping of the void free filled trench with a thick layer of amorphous silicon, planarization of the wafer thereafter, followed by a thermal anneal to re-distribute the dopant within the filled trench. Thereafter, additional steps can be performed to complete the formation of the capacitor structure.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: November 4, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Ajit Paranjpe, Somnath Nag
  • Patent number: 7444198
    Abstract: A method of determining a physical property of a substrate includes recording a first spectrum obtained from a substrate, the first spectrum being obtained during a polishing process that alters a physical property of the substrate. The method includes identifying, in a database, at least one of several previously recorded spectra that is similar to the recorded first spectrum. Each of the spectra in the database has a physical property value associated therewith. The method includes generating a signal indicating that a first value of the physical property is associated with the first spectrum, the first value being determined using the physical property value associated with the identified previously recorded spectrum in the database. A system for determining a physical property of a substrate includes a polishing machine, an endpoint determining module, and a database.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: October 28, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Abraham Ravid, Boguslaw A. Swedek, Jeffrey Drue David, Jun Qian, Ingemar Carlsson, Dominic J. Benvegnu, Harry Q. Lee, Lakshmanan Karuppiah
  • Patent number: 7442900
    Abstract: Embodiments of the present invention generally provide an apparatus for providing a uniform thermal profile to a plurality of large area substrates during thermal processing. In one embodiment, an apparatus for thermal processing large area substrates includes a chamber having a plurality of processing zones disposed therein that are coupled to a lift mechanism. The lift mechanism is adapted to vertically position the plurality of processing zones within the chamber. Each processing zone further includes an upper heated plate, a lower heated plate adapted to support a first substrate thereon and an unheated plate adapted to support a second substrate thereon, wherein the unheated plate is disposed between the upper and lower heated plates.
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: October 28, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Makoto Inagawa, Akihiro Hosokawa
  • Publication number: 20080261405
    Abstract: An oxygen-free hydrogen plasma ashing process particularly useful for low-k dielectric materials based on hydrogenated silicon oxycarbide materials. The main ashing step includes exposing a previously etched dielectric layer to a plasma of hydrogen and optional nitrogen, a larger amount of water vapor, and a yet larger amount of argon or helium. Especially for porous low-k dielectrics, the main ashing plasma additionally contains a hydrocarbon gas such as methane. The main ashing may be preceded by a short surface treatment by a plasma of a hydrogen-containing reducing gas such as hydrogen and optional nitrogen.
    Type: Application
    Filed: April 19, 2007
    Publication date: October 23, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Chan-Syun Yang, Changhun Lee
  • Publication number: 20080261409
    Abstract: A processing device for producing a layer system including at least one layer of an organic light emitting semiconductor material (OLED), comprises (1) a configuration of one or more treatment stations for processing the substrate in the treatment stations and (2) a first encapsulation module for providing an encapsulation element on the layer system deposited on the substrate. Furthermore, the processing device comprises at least a second encapsulation module, and is configured to provide the encapsulation element on the coated substrate in the first or second encapsulation module alternatively. By providing two encapsulation modules, the second module may be cleaned during a continuous operation of the processing device, while the first encapsulation module is generating an encapsulation on a coated substrate. In this way, a continuous operation of a coating device for depositing an OLED coating and an encapsulation element on the OLED coating is provided.
    Type: Application
    Filed: March 27, 2008
    Publication date: October 23, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Uwe Hoffmann, Jose Manuel Dieguez-Campo
  • Publication number: 20080257864
    Abstract: A variety of techniques may be employed alone or in combination to reduce the incidence of defects arising in dielectric stack structures formed by chemical vapor deposition (CVD). Incidence of a first defect type attributable to reaction between an unreacted species of a prior CVD step and reactants of a subsequent CVD step, is reduced by exposing a freshly-deposited dielectric layer to a plasma before any additional layers are deposited. Incidence of a second defect type attributable to the presence of incompletely vaporized CVD liquid precursor material, is reduced by exposing the freshly-deposited dielectric layer to a plasma, and/or by continuing the flow of carrier gas through an injection valve for a period beyond the conclusion of the CVD step.
    Type: Application
    Filed: April 10, 2008
    Publication date: October 23, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Christopher Dennis Bencher, Lee Luo
  • Patent number: 7439142
    Abstract: In one embodiment, a method for forming a silicon-based material on a substrate having dielectric materials and source/drain regions thereon within a process chamber is provided which includes exposing the substrate to a first process gas comprising silane, methylsilane, a first etchant, and hydrogen gas to deposit a first silicon-containing layer thereon. The first silicon-containing layer may be selectively deposited on the source/drain regions of the substrate while the first silicon-containing layer may be etched away on the surface of the dielectric materials of the substrate. Subsequently, the process further provides exposing the substrate to a second process gas comprising dichlorosilane and a second etchant to deposit a second silicon-containing layer selectively over the surface of the first silicon-containing layer on the substrate.
    Type: Grant
    Filed: October 9, 2006
    Date of Patent: October 21, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Arkadii V. Samoilov, Yihwan Kim, Errol Sanchez, Nicholas C. Dalida
  • Patent number: 7440859
    Abstract: Methods for determining characteristics of a plasma are provided. In one embodiment, a method for determining characteristics of a plasma includes obtaining metrics of a plasma at two different frequencies, and determining at least one characteristic of the plasma utilizing the metrics. In another embodiment, a method for determining characteristics of a plasma includes obtaining metrics of current and voltage information for first and second waveforms coupled to a plasma at different frequencies, determining at least one characteristic of the plasma using the metrics obtained from each different frequency waveform. In another embodiment, the method includes providing a plasma impedance model of a plasma as a function of frequency, and determining at least one characteristic of a plasma using model.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: October 21, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Steven C. Shannon, Daniel J. Hoffman, Jeremiah T. P. Pender, Tarreg Mawari
  • Patent number: 7440091
    Abstract: An apparatus and method incorporating at least two sensors that detect the presence of substrate defects, such as breakage or misalignment, along the lengths of at least two parallel edges of a moving substrate. In one embodiment, an apparatus for detecting substrate defects includes a sensor arrangement including at least two sensors that continuously sense a substrate near at least two parallel edges of the substrate as the substrate passes the sensors. In another embodiment, an apparatus for detecting substrate defects includes a robot having a substrate support surface, and a sensor arrangement including at least two sensors that continuously sense a substrate near at least two parallel edges of the substrate during substrate transfer on the substrate support surface.
    Type: Grant
    Filed: October 26, 2004
    Date of Patent: October 21, 2008
    Assignee: Applied Materials, Inc.
    Inventors: William A. Bagley, Paohuei Lee, Kyung-Tae Kim, Sam-Kyung Kim, Toshio Kiyotake, Sam Kim, Takayuki Matsumoto, Jonathan Erik Larson, Makoto Inagawa, James Hoffman, Billy C. Leung
  • Patent number: 7438949
    Abstract: An exemplary apparatus and method of forming a ruthenium tetroxide containing gas to form a ruthenium containing layer on a surface of a substrate is described herein. The method and apparatus described herein may be especially useful for fabricating electronic devices that are formed on a surface of the substrate or wafer. Generally, the method includes exposing a surface of a substrate to a ruthenium tetroxide vapor to form a catalytic layer on the surface of a substrate and then filling the device structures by an electroless, electroplating, physical vapor deposition (PVD), chemical vapor deposition (CVD), plasma enhanced CVD (PECVD), atomic layer deposition (ALD) or plasma enhanced ALD (PE-ALD) processes. In one embodiment, the ruthenium containing layer is formed on a surface of a substrate by creating ruthenium tetroxide in an external vessel and then delivering the generated ruthenium tetroxide gas to a surface of a temperature controlled substrate positioned in a processing chamber.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: October 21, 2008
    Assignee: Applied Materials, Inc.
    Inventor: Timothy W. Weidman
  • Patent number: 7437944
    Abstract: The present invention provides apparatus and method for controlling mix ratio of gas supplied to a processing chamber integrated with chamber pressure. In one embodiment, an integrated controller is used to adjust mix ratio and chamber pressure. In one embodiment, the mix ratio and chamber pressure may be adjusted using a flow sensor and a control valve disposed in each gas supply line. In one embodiment, the flow sensor used in each gas supply line is insensitive to upstream pressure perturbations.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: October 21, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Chris Melcer, John Lane
  • Patent number: 7438468
    Abstract: A thermal processing system includes a source of laser radiation emitting at a laser wavelength, beam projection optics disposed between the reflective surface and a substrate support capable of holding a substrate to be processed, a pyrometer responsive to a pyrometer wavelength, and a wavelength responsive optical element having a first optical path for light in a first wavelength range including the laser wavelength, the first optical path being between the source of laser radiation and the beam projection optics, and a second optical path for light in a second wavelength range including the pyrometer wavelength, the second optical path being between the beam projection optics and the pyrometer. The system can further include a pyrometer wavelength blocking filter between the source of laser radiation and the wavelength responsive optical element.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: October 21, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Bruce E. Adams, Dean Jennings, Aaron M. Hunter, Abhilash J. Mayur, Vijay Parihar, Timothy N. Thomas
  • Patent number: 7439191
    Abstract: A method of silicon layer deposition using a cyclical deposition process. The cyclical deposition process comprises alternately adsorbing a silicon-containing precursor and a reducing gas on a substrate structure. Thin film transistors, such as for example a bottom-gate transistor or a top-gate transistor, including one or more silicon layers may, be formed using such cyclical deposition techniques.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: October 21, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Kam Law, Quanyuan Shang, William Reid Harshbarger, Dan Maydan
  • Patent number: 7438175
    Abstract: Embodiments of a vacuum conveyor system are provided herein. In one embodiment a vacuum conveyor system includes a first vacuum sleeve having a plurality of rollers that support and move substrates through the first vacuum sleeve. A port is provided for sealably coupling the first vacuum sleeve to a process chamber. A first substrate handler is disposed proximate the port. Multiple ports may be provided for sealably coupling the first vacuum sleeve to a plurality of process chambers. A dedicated substrate handler is provided for each process chamber. A second vacuum sleeve may be sealably coupled to an opposing side of the process chambers. The vacuum conveyor system may be modular with independent modules linked via load lock chambers. The plurality of rollers may compensate for any sag of the leading edge of a substrate being transported thereupon.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: October 21, 2008
    Assignee: Applied Materials, Inc.
    Inventors: John M. White, Wendell T. Blonigan
  • Patent number: 7440088
    Abstract: Methods and devices are provided for profiling a beam of light that includes a wavelength ?. The beam of light is received. Secondary light is generated at a wavelength ?? different from wavelength ? by fluorescing a material with the received beam of light. The secondary light is separated from the received beam of light. The separated secondary light is optically directed to a sensor.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: October 21, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Timothy N. Thomas, Bruce Adams, Dean C. Jennings
  • Patent number: 7434676
    Abstract: In a first aspect, a first method is provided for electronic device manufacturing. The first method includes the steps of (1) receiving a request to transfer a carrier from a first substrate loading station to a second substrate loading station of an electronic device manufacturing facility including a plurality of substrate loading stations, wherein the facility further includes a plurality of carrier supports coupled to a conveyor system adapted to move the carrier within the facility; (2) assigning one of the plurality of carrier supports to transfer the carrier from the first substrate loading station to the second substrate loading station such that at least one of a time required for the transfer is reduced and balance of the conveyor system is maintained; (3) moving the carrier from the first substrate loading station; and (4) moving the carrier to the second substrate loading station. Numerous other aspects are provided.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: October 14, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Todd J. Brill, Michael Teferra, Amitabh Puri, Daniel R. Jessop, Glade L. Warner, David C. Duffin
  • Patent number: 7436645
    Abstract: A pedestal assembly and method for controlling temperature of a substrate during processing is provided. In one embodiment, the pedestal assembly includes an electrostatic chuck coupled to a metallic base. The electrostatic chuck includes at least one chucking electrode and metallic base includes at least two fluidly isolated conduit loops disposed therein. In another embodiment, the pedestal assembly includes a support member that is coupled to a base by a material layer. The material layer has at least two regions having different coefficients of thermal conductivity. In another embodiment, the support member is an electrostatic chuck. In further embodiments, a pedestal assembly has channels formed between the base and support member for providing cooling gas in proximity to the material layer to further control heat transfer between the support member and the base, thereby controlling the temperature profile of a substrate disposed on the support member.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: October 14, 2008
    Assignee: Applied Materials, Inc.
    Inventors: John Holland, Theodoros Panagopoulos, Alexander Matyushkin, Dan Katz, Michael F. Hegarty, Denis M. Koosau, Nicolas Gani
  • Patent number: 7434485
    Abstract: A battery powered sensing device for diagnosing a processing system and method for using the same are provided. The support platform generally has physical characteristics, such as size, profile height, mass, flexibility and/or strength, substantially similar to those of the substrates that are to be processed in the processing system, so the sensor device can be transferred through the processing system in a manner similar to the manner in which production substrates are transferred through the processing system.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: October 14, 2008
    Assignee: Applied Materials, Inc.
    Inventor: Reginald Hunter
  • Patent number: 7435686
    Abstract: A method of fabricating a semiconductor device. The method comprises subjecting a substrate having formed thereon photoresist layer to a plasma hydrogen, the substrate further having formed thereon a sacrificial layer; contacting the photoresist layer with a photoresist removal solution; subjecting the sacrificial layer to a plasma hydrogen; and contacting the sacrificial material layer with an etchant solution.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: October 14, 2008
    Assignee: Applied Materials, Inc.
    Inventor: Steven Verhaverbeke