Patents Assigned to Applied Material
  • Patent number: 7435685
    Abstract: A method of fabricating an interconnect structure comprising etching a via into an upper low K dielectric layer and into a hardened portion of a lower low K dielectric layer. The via is defined by a pattern formed in a photoresist layer. The photoresist layer is then stripped, and a trench that circumscribes the via as defined by a hard mask is etched into the upper low K dielectric layer and, simultaneously, the via that was etched into the hardened portion of the lower low K dielectric layer is further etched into the lower low K dielectric layer. The result is a low K dielectric dual damascene structure.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: October 14, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Gerardo A. Delgadino, Yan Ye, Neungho Shin, Yunsang Kim, Li-Qun Xia, Tzu-Fang Huang, Lihua Li Huang, Joey Chiu, Xiaoye Zhao, Fang Tian, Wen Zhu, Ellie Yieh
  • Publication number: 20080248215
    Abstract: The invention relates to a process and to a web deposition machine for coating a plastic substrate with at least one metal layer, in particular plastic foil for flexible, printed circuit boards, wherein before depositing a first layer onto a surface of the plastic substrate to be deposited, a non depositing pretreatment of this surface is performed. It is the object of the invention to provide a process as described above through which the adhesion of metal layers on a plastic substrate is improved. Furthermore, a web deposition machine shall be provided through which such process can be performed. The object is accomplished through a process so that the non depositing pretreatment is performed in two steps, thus in a first step in which the surface of the plastic substrate (2) is cleaned with a non reactive low energy plasma (14), and in a second step in which the surface of the plastic substrate (2) is activated through reactive high energy ion radiation (17).
    Type: Application
    Filed: February 7, 2008
    Publication date: October 9, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Peter Sauer, Hans-Georg Lotz
  • Publication number: 20080245295
    Abstract: The invention relates to a device for the continuous coating of a strip-like substrate in a vacuum, especially for producing coating patterns on the substrate, with a printing roller and a backing roller, the substrate guided between the printing roller and the backing roller. The invention device includes a coating or release agent transferable to the substrate via the printing roller and a servo unit that has a controllable servo motor, wherein in a working position adjustable with the servo unit, the printing roller and the backing roller are in operative connection with one another. The object of the invention is to improve the abadjustability of the generic device. The object is achieved by the servo unit's having a controllable servo motor.
    Type: Application
    Filed: February 20, 2008
    Publication date: October 9, 2008
    Applicant: Applied Materials, Inc.
    Inventor: Erwin Multrus
  • Patent number: 7431797
    Abstract: A plasma reactor for processing a workpiece includes a process chamber having an enclosure including a ceiling and having a vertical axis of symmetry generally perpendicular to the ceiling, a workpiece support pedestal inside the chamber and generally facing the ceiling, process gas injection apparatus coupled to the chamber and a vacuum pump coupled to the chamber. The reactor further includes a plasma source power applicator overlying the ceiling and having a radially inner applicator portion and a radially outer applicator portion, and RF power apparatus coupled to the inner and outer applicator portions, and tilt apparatus supporting at least the outer applicator portion and capable of tilting at least the outer applicator portion about a radial axis perpendicular to the axis of symmetry and capable of rotating at least the outer applicator portion about the axis of symmetry.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: October 7, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Madhavi R. Chandrachood, Richard Lewington, Darin Bivens, Ajay Kumar, Ibrahim M. Ibrahim, Michael N. Grimbergen, Renee Koch, Sheeba J. Panayil
  • Patent number: 7431795
    Abstract: A method and apparatus for process integration in manufacture of a gate structure of a field effect transistor are disclosed. The method includes assembling an integrated substrate processing system having a metrology module and a vacuumed processing platform to perform controlled and adaptive plasma processes without exposing the substrate to a non-vacuumed environment.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: October 7, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Ajay Kumar, Ramesh Krishnamurthy
  • Patent number: 7431772
    Abstract: A gas distributor distributes a gas across a surface of a substrate processing chamber. The gas distributor has a hub, a baffle extending radially outward from the hub, a first set of vanes and a second set of vanes. In one version, the hub has a gas inlet and a gas outlet. The baffle has an opposing first and second surfaces. First vanes are on the first surface of the baffle and direct gas across chamber surfaces. In one version, the first vanes comprise arcuate plates that curve and taper outward from the hub. Second vanes are on the second surface of the baffle and direct gas across the second surface of the baffle. In one version, a gas feed-through tube in the hub can allow a gas to bypass the first and second set of vanes.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: October 7, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Laxman Murugesh, Padmanabhan Krishnaraj, Carl Dunham
  • Patent number: 7431857
    Abstract: A method and apparatus for generating and controlling a plasma in a semiconductor substrate processing chamber using a dual frequency RF source is provided. The method includes the steps of supplying a first RF signal from the source to an electrode within the processing chamber at a first frequency and supplying a second RF signal from the source to the electrode within the processing chamber at a second frequency. The second frequency is different from the first frequency by an amount equal to a desired frequency. Characteristics of a plasma formed in the chamber establish a sheath modulation at the desired frequency.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: October 7, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Steven C. Shannon, Alex Paterson, Theodoros Panagopoulos, John P. Holland, Dennis Grimard, Yashushi Takakura
  • Patent number: 7432177
    Abstract: A combination of a dry oxidizing, wet etching, and wet cleaning processes are used to remove particle defects from a wafer after ion implantation, as part of a wafer bonding process to fabricate a SOI wafer. The particle defects on the topside and the backside of the wafer are oxidized, in a dry strip chamber, with an energized gas. In a wet clean chamber, the backside of the wafer is treated with an etchant solution to remove completely or partially a thermal silicon oxide layer, followed by exposure of the topside and the backside to a cleaning solution. The cleaning solution contains ammonium hydroxide, hydrogen peroxide, DI water, and optionally a chelating agent, and a surfactant. The wet clean chamber is integrated with the dry strip chamber and contained in a single wafer processing system.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: October 7, 2008
    Assignee: Applied Materials, Inc.
    Inventors: James S. Papanu, Han-Wen Chen, Brian J. Brown, Steven Verhaverbeke
  • Patent number: 7430984
    Abstract: A plasma reactor for processing a workpiece, the plasma reactor comprising an enclosure, a workpiece support within the enclosure facing an overlying portion of the enclosure, the workpiece support and the overlying portion of the enclosure defining a process region therebetween extending generally across the diameter of said wafer support, the enclosure having a first and second pairs of openings therethrough, the two openings of each of the first and second pairs being near generally opposite sides of said workpiece support, a first hollow conduit outside of the process region and connected to the first pair of openings, providing a first torroidal path extending through the conduit and across the process region, a second hollow conduit outside of the process region and connected to the second pair of openings, providing a second torroidal path extending through the conduit and across the process region, first and second plasma source power applicators inductively coupled to the interiors of the first and s
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: October 7, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Hiroji Hanawa, Kartik Ramaswamy, Kenneth S. Collins, Andrew Nguyen, Gonzalo Antonio Monroy
  • Patent number: 7431967
    Abstract: A method of filling a gap on a substrate includes providing flows of silicon-containing processing gas oxidizing processing gas, and phosphorous-containing processing gas to a chamber housing the substrate and depositing a first portion of a P-doped silicon oxide film as a substantially conformal layer in the gap by causing a reaction among the processing gases and varying over time a ratio of the gases. The temperature of the substrate is maintained below about 500° C. throughout deposition of the conformal layer. The method also includes depositing a second portion of the P-doped silicon oxide film as a bulk layer by maintaining the ratio of the gases substantially constant throughout deposition of the bulk layer. The temperature of the substrate is maintained below about 500° C. throughout deposition of the bulk layer.
    Type: Grant
    Filed: January 14, 2004
    Date of Patent: October 7, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Zheng Yuan, Shankar Venkataraman, Cary Ching, Shang Wong, Kevin Mikio Mukai, Nitin K. Ingle
  • Patent number: 7433053
    Abstract: Apparatus for optical inspection of a sample includes a radiation source, adapted to irradiate a spot on the sample with coherent radiation, and collection optics, adapted to collect the radiation scattered from the spot so as to form a beam of scattered radiation. A diffractive optical element (DOE) is positioned to intercept the beam of scattered radiation and is adapted to deflect a first portion of the beam by a predetermined offset relative to a second portion of the beam, and then to optically combine the first portion with the second portion to generate a product beam. A detector is positioned to receive the product beam and to generate a signal responsive thereto, which is processed by a signal processor so as to determine an autocorrelation value of the product beam.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: October 7, 2008
    Assignee: Applied Materials, Israel, Ltd.
    Inventor: Daniel Some
  • Patent number: 7432210
    Abstract: A method of opening a carbon-based hardmask layer composed of amorphous carbon containing preferably at least 60% carbon and between 10 and 40% hydrogen. The hardmask is opened by plasma etching using an etching gas composed of H2, N2, and CO. The etching is preferably performed in a plasma etch reactor having an HF biased pedestal electrode and a capacitively VHF biased showerhead.
    Type: Grant
    Filed: October 5, 2005
    Date of Patent: October 7, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Judy Wang, Shing-Li Sung, Shawming Ma, Bryan Pu
  • Patent number: 7433756
    Abstract: In a first aspect, a first method of calibrating a substrate carrier loader to a moving conveyor is provided. The first method includes the steps of (1) providing a substrate carrier loader adapted to load substrate carriers onto a moving conveyor; (2) aligning the substrate carrier loader to the moving conveyor; and (3) calibrating the substrate carrier loader to the moving conveyor. Numerous other aspects are provided.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: October 7, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Michael R. Rice, Eric A. Englhardt, Robert B. Lowrance, Martin R. Elliott, Jeffrey C. Hudgens, Kirk Van Katwyk, Amit Puri
  • Patent number: 7433759
    Abstract: A method for calibrating a controller of a robotic arm in a microelectronics manufacturing apparatus that includes storing a default position for an edge detector, moving a blade on the robotic arm based on the default position of the edge detector such that at least three edge points on the blade pass through and are detected by the edge detector, generating a plurality of arm position measurements from an arm position sensor by measuring a position with the arm position sensor of the robotic arm at each position of the robotic arm at which an edge point of the blade is detected by the edge detector, and determining at least one of an actual position of the edge detector and an offset for measurements of the arm position sensor based on the plurality of arm position measurements.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: October 7, 2008
    Assignee: Applied Materials, Inc.
    Inventor: Roy C. Nangoy
  • Patent number: 7432201
    Abstract: A method for making a film stack containing one or more silicon-containing layers and one or more metal-containing layers and a substrate processing system for forming the film stack on a substrate are provided. The substrate processing system includes one or more transfer chambers coupled to one or more load lock chambers and two or more different types of process chambers. The two or more types of process chambers are used to deposit the one or more silicon-containing layers and the one or more metal-containing layers in the same substrate processing system without breaking the vacuum, taking the substrate out of the substrate processing system to prevent surface contamination, oxidation, etc., such that additional cleaning or surface treatment steps can be eliminated. The substrate processing system is configured to provide high throughput and compact footprint for in-situ substrate processing and carry out different types of processes.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: October 7, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Takako Takehara, Sheng Sun, John M. White
  • Patent number: 7432184
    Abstract: A method for making a film stack containing one or more metal-containing layers and a substrate processing system for forming the film stack on a substrate are provided. The substrate processing system includes at least one transfer chamber coupled to at least one load lock chamber, at least one first physical vapor deposition (PVD) chamber configured to deposit a first material layer on a substrate, and at least one second PVD chamber for in-situ deposition of a second material layer over the first material layer within the same substrate processing system without breaking the vacuum or taking the substrate out of the substrate processing system to prevent surface contamination, oxidation, etc. The substrate processing system is configured to provide high throughput and compact footprint for in-situ sputtering of different material layers in designated PVD chambers.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: October 7, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Akihiro Hosokawa, Makoto Inagawa, Hienminh Huu Le, John M. White
  • Patent number: 7432209
    Abstract: A plasma etch process with in-situ backside polymer removal begins with a workpiece having a porous or non-porous carbon-doped silicon oxide dielectric layer and a photoresist mask on a surface of the workpiece. The workpiece is clamped onto an electrostatic chuck in an etch reactor chamber. The process includes introducing a fluoro-carbon based process gas and applying RF bias power to the electrostatic chuck and RF source power to an overhead electrode to etch exposed portions of the dielectric layer while depositing protective fluoro-carbon polymer on the photoresist mask. The process further includes removing the fluoro-carbon based process gas and introducing a hydrogen-based process gas and applying RF source power to the overhead electrode.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: October 7, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Gerardo A. Delgadino, Richard Hagborg, Douglas A. Buchberger, Jr.
  • Patent number: 7431585
    Abstract: An apparatus for processing substrates is disclosed. In one embodiment, the apparatus includes a housing and a plurality of stacked cell structures in the housing. An actuator is adapted to move the plurality of stacked cell structures inside of the housing while substrates in the stacked cell structures are being heated.
    Type: Grant
    Filed: October 22, 2002
    Date of Patent: October 7, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Jun Zhao, David Quach, Timothy Weidman, Rick J. Roberts, Farhad Moghadam, Dan Maydan
  • Patent number: 7431859
    Abstract: A plasma etch process includes injecting process gases with different compositions of chemical species through different radial gas injection zones of an overhead electrode to establish a desired distribution of chemical species among the plural gas injection zones.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: October 7, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Kallol Bera, Xiaoye Zhao, Kenny L. Doan, Ezra Robert Gold, Paul Lukas Brillhart, Bruno Geoffrion, Bryan Pu, Daniel J. Hoffman
  • Publication number: 20080237029
    Abstract: A method and resultant produce of forming barrier layer based on ruthenium tantalum in a via or other vertical interconnect structure through a dielectric layer in a multi-level metallization. The RuTa layer in a RuTa/RuTaN bilayer, which may form discontinuous islands, is actively oxidized, preferably in an oxygen plasma, to thereby bridge the gaps between the islands. Alternatively, ruthenium tantalum oxide is reactive sputtered onto the RuTaN or directly onto the underlying dielectric by plasma sputtering a RuTa target in the presence of oxygen.
    Type: Application
    Filed: March 26, 2007
    Publication date: October 2, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Xianmin TANG, Hua Chung, Rongjun Wang, Praburam Gopalraja, Jick M. Yu, Jenn Yue Wang