Patents Assigned to Applied Material
  • Patent number: 7429718
    Abstract: A substrate support assembly and method for controlling the temperature of a substrate within a process chamber are provided. A substrate support assembly includes an thermally conductive body comprising a stainless steel material, a substrate support surface on the surface of the thermally conductive body and adapted to support a large area substrate thereon, one or more heating elements embedded within the thermally conductive body, a cooling plate positioned below the thermally conductive body, a base support structure comprising a stainless steel material, positioned below the cooling plate and adapted to structurally support the thermally conductive body, and one or more cooling channels adapted to be supported by the base support structure and positioned between the cooling plate and the base support structure. A process chamber comprising the substrate support assembly of the invention is also provided.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: September 30, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Makoto Inagawa, Akihiro Hosokawa
  • Patent number: 7429402
    Abstract: In one embodiment, a method for depositing a tungsten-containing film on a substrate is provided which includes depositing a barrier layer on the substrate, such as a titanium or tantalum containing barrier layer and depositing a ruthenium layer on the barrier layer. The method further includes depositing a tungsten nucleation layer on the ruthenium layer and depositing a tungsten bulk layer on the tungsten nucleation layer. The barrier layer, the ruthenium layer, the tungsten nucleation layer and the tungsten bulk layer are independently deposited by an ALD process, a CVD process or a PVD process, preferably by an ALD process. In some examples, the substrate is exposed to a soak process prior to depositing a subsequent layer, such as between the deposition of the barrier layer and the ruthenium layer, the ruthenium layer and the tungsten nucleation layer or the tungsten nucleation layer and the tungsten bulk layer.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: September 30, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Srinivas Gandikota, Madhu Moorthy, Amit Khandelwal, Avgerinos V. Gelatos, Mei Chang, Kavita Shah, Seshadri Ganguli
  • Patent number: 7429516
    Abstract: In one embodiment, a method for forming a tungsten barrier material on a substrate is provided which includes depositing a tungsten layer on a substrate during a vapor deposition process and exposing the substrate sequentially to a tungsten precursor and a nitrogen precursor to form a tungsten nitride layer on the tungsten layer. Some examples provide that the tungsten layer may be deposited by sequentially exposing the substrate to the tungsten precursor and a reducing gas (e.g., diborane or silane) during an atomic layer deposition process. The tungsten layer may have a thickness of about 50 ? or less and tungsten nitride layer may have an electrical resistivity of about 380 ??-cm or less. Other examples provide that a tungsten bulk layer may be deposited on the tungsten nitride layer by a chemical vapor deposition process.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: September 30, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Shulin Wang, Ulrich Kroemer, Lee Luo, Aihua Chen, Ming Li
  • Patent number: 7429717
    Abstract: The present invention relates to an apparatus and method for heating a semiconductor processing chamber. One embodiment of the present invention provides a furnace for heating a semiconductor processing chamber. The furnace comprises a heater surrounding side walls of the semiconductor processing chamber, wherein the heater comprises a plurality of heating elements connected in at least two independently controlled zones, and a shell surrounding the heater.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: September 30, 2008
    Assignee: Applied Materials, Inc.
    Inventor: Joseph Yudovsky
  • Patent number: 7428850
    Abstract: A substrate inspection system includes two or more inspection modules supported on a plate. A chamber is supported beneath the plate by a translation system, which is configured to provide horizontal displacement of the chamber under the plate to permit loading and unloading of a substrate to/from the chamber. Thus, when the chamber is in a loading/unloading position it is at least partially uncovered from the plate. The translation system may be further configured to provide vertical displacement of the chamber with respect to the plate so as to position an upper surface of a wall of the chamber in close proximity to a lower surface of the plate when the chamber is in an inspection position. In such a position, the upper surface of the wall of the chamber and the lower surface of the plate may be separated by an air gap.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: September 30, 2008
    Assignee: Applied Materials, Israel,Ltd.
    Inventors: Ron Naftali, Yoram Uziel, Ran Vered, Eitan Pinhasi, Igor Krivts (Krayvitz)
  • Patent number: 7429410
    Abstract: An apparatus and method for supporting a substantial center portion of a gas distribution plate is disclosed. At least one support member is capable of engaging and disengaging the diffuser with a mating connection without prohibiting flow of a gas or gasses through the diffuser and is designed to provide vertical suspension to a diffuser that is supported at its perimeter, or capable of supporting the diffuser without a perimeter support. In one aspect, the at least one support member is a portion of a gas delivery conduit and in another embodiment is a plurality of support members separated from the gas delivery conduit. The at least one support member is capable of translating vertical lift, or vertical compression to a center area of the diffuser. A method and apparatus for controlling gas flow from the gas delivery conduit to the gas distribution plate is also disclosed.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: September 30, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Ernst Keller, John M. White, Robin L. Tiner, Jiri Kucera, Soo Young Choi, Beom Soo Park, Michael Starr
  • Patent number: 7429540
    Abstract: A method for processing a semiconductor substrate in a chamber includes forming a silicon oxynitride film using a two-step anneal process. The first anneal step includes annealing the silicon oxynitride film in the presence of an oxidizing gas that has a partial pressure of about 1 to about 100 mTorr, and the second anneal step includes annealing the silicon oxynitride film with oxygen gas that has a flow rate of about 1 slm. The first anneal step is performed at a higher chamber temperature and higher chamber pressure than the second anneal step.
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: September 30, 2008
    Assignee: Applied Materials, Inc.
    Inventor: Christopher S. Olsen
  • Patent number: 7429207
    Abstract: A method of forming a polishing pad with a polishing layer having a polishing surface and a back surface. A plurality of grooves are formed on the polishing surface, and an indentation is formed in the back surface of the polishing layer. A region on the polishing surface corresponding to the indentation in the back surface is free of grooves or has shallower grooves.
    Type: Grant
    Filed: October 9, 2006
    Date of Patent: September 30, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Boguslaw A. Swedek, Manoocher Birang
  • Patent number: 7429532
    Abstract: A method of processing a thin film structure on a semiconductor substrate using an optically writable mask, the method includes placing the substrate in a reactor chamber, the substrate having on its surface a target layer to be exposed to a light source in accordance with a predetermined pattern, depositing an optically writable carbon-containing mask layer on the substrate by (a) introducing a carbon-containing process gas into the chamber, (b) generating a reentrant toroidal RF plasma current in a reentrant path that includes a process zone overlying the workpiece by coupling plasma RF source power to an external portion of the reentrant path, (c) coupling RF plasma bias power or bias voltage to the workpiece.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: September 30, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Kartik Ramaswamy, Hiroji Hanawa, Biagio Gallo, Kenneth S. Collins, Kai Ma, Vijay Parihar, Dean Jennings, Abhilash J. Mayur, Amir Al-Bayati, Andrew Nguyen
  • Patent number: 7428915
    Abstract: A valve system having high maximum gas flow rate and fine control of gas flow rate, includes a valve housing for blocking gas flow through a gas flow path, a large area opening through said housing having a first arcuate side wall and a small area opening through said housing having a second arcuate side wall, and respective large area and small area rotatable valve flaps in said large area and small area openings, respectively, and having arcuate edges congruent with said first and second arcuate side walls, respectively and defining therebetween respective first and second valve gaps. The first and second valve gaps are sufficiently small to block flow of a gas on one side of said valve housing up to a predetermined pressure limit, thereby obviating any need for O-rings.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: September 30, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Andrew Nguyen, Hiroji Hanawa, Kenneth S. Collins, Kartik Ramaswamy, Amir Al-Bayati, Biagio Gallo
  • Patent number: 7429210
    Abstract: A polishing article and method for manufacturing a polishing article for use in a chemical mechanical polishing process is disclosed. The polishing article has a plurality of polishing material tiles separated by grooves formed in or through a polishing material and may be adhesively bound to a base film. The polishing article may include various polygonal tiles and oval shapes formed in the polishing material which allow enhanced slurry retention and ease in rolling from a polishing material supply roll and onto a take-up roll in a web type platen assembly. The polishing article may also include an upper carrier film adapted to minimize delaminating stress placed in an area of the polishing article that is not adapted for polishing. A method and apparatus for manufacturing the various embodiments of the polishing article and a replacement supply roll are also disclosed.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: September 30, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Benjamin A. Bonner, Peter McReynolds, Gregory E. Menk, Anand N. Iyer, Gopalakrishna B. Prabhu, Erik S. Rondum, Robert L. Jackson, Garlen Leung
  • Patent number: 7429361
    Abstract: In one embodiment, an apparatus for generating a gaseous chemical precursor used in a vapor deposition processing system is provided which includes a canister comprising a sidewall, a top, and a bottom encompassing an interior volume therein, an inlet port and an outlet port in fluid communication with the interior volume, and an inlet tube extending from the inlet port into the canister. The apparatus further may contain a plurality of baffles within the interior volume extending between the top and the bottom of the canister, and a precursor slurry contained within the interior volume, wherein the precursor slurry contains a solid precursor material and a thermally conductive material that is unreactive towards the solid precursor material. In one example, the solid precursor material solid precursor material is pentakis(dimethylamino) tantalum.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: September 30, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Seshadri Ganguli, Ling Chen, Vincent W. Ku
  • Patent number: 7429538
    Abstract: A method of forming a silicon oxynitride gate dielectric. The method includes incorporating nitrogen into a dielectric film using a plasma nitridation process to form a silicon oxynitride film. The silicon oxynitride film is annealed in a first ambient. The first ambient comprises an inert ambient with a first partial pressure of oxygen at a first temperature. The silicon oxynitride film is then annealed in a second ambient comprising a second partial pressure of oxygen at a second temperature. The second partial pressure of oxygen is greater than the first partial pressure of oxygen.
    Type: Grant
    Filed: June 27, 2005
    Date of Patent: September 30, 2008
    Assignee: Applied Materials, Inc.
    Inventor: Christopher S. Olsen
  • Publication number: 20080230382
    Abstract: A magnetron cathode assembly of the present invention comprises a drive shaft, one end being connected with a cathode or target assembly in the interior space of a vacuum chamber. A housing is rigidly mounted to the wall of a coating chamber of a sputter coating device by a flange. Between the housing and the drive shaft, a combined axial and radial bearing, such as a cross roller bearing, is arranged. The bearing supports the shaft rotatably relative to the housing. By providing the combined axial and radial bearing, the installation space of the assembly may be reduced.
    Type: Application
    Filed: March 19, 2008
    Publication date: September 25, 2008
    Applicant: Applied Materials, Inc.
    Inventor: Harald Gaertner
  • Patent number: 7427338
    Abstract: An apparatus comprising an electrolyte cell, an anode, and a porous rigid diffuser. The electrolyte cell is configured to receive a substrate to have a metal film deposited thereon. An anode is contained within the electrolyte cell. A porous rigid diffuser is connected to the electrolyte cell and extends across the electrolyte cell. The diffuser is positioned between a location that the substrate is to be positioned when the metal film is deposited thereon and the anode.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: September 23, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Yezdi N. Dordi, Joseph J. Stevens, H. Peter W. Hey, Donald J. K. Olgado
  • Patent number: 7427340
    Abstract: A method and apparatus for a processing pad assembly for polishing a substrate is disclosed. The processing pad assembly has a conductive processing pad having a plurality of raised features made of a conductive composite disposed on a conductive carrier. The raised features are adapted to polish the feature surface of a substrate and define channels therebetween. The conductive processing pad may have lower features made of a conductive composite that extend into the sub-pad from the conductive carrier. The conductive processing pad is adhered to a sub-pad bound to an opposing conductive layer and the opposing conductive layer bound to a platen assembly.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: September 23, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Rashid A. Mavliev, Ralph M. Wadensweiler
  • Patent number: 7427753
    Abstract: A method of milling a cross section of a wafer and a milling device. The method includes a coarse scanning of at least two milling frames and a fine scanning of at least one milling frame. The milling device is adapted to cross-section milling of a wafer, said milling includes a coarse scanning of at least two milling frames and a fine scanning of at least one milling frame.
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: September 23, 2008
    Assignee: Applied Materials, Israel, Ltd.
    Inventor: Asher Pearl
  • Patent number: 7427568
    Abstract: A method of layer formation on a substrate with high aspect ratio features is disclosed. The layer is formed from a gas mixture comprising one or more process gases and one or more etch species. The one or more process gases react to deposit a material layer on the substrate. In conjunction with the material layer deposition, the etch species selectively remove portions of the deposited material layer adjacent to high aspect ratio feature openings, filling such features in a void-free and/or seam-free manner. The material layer may be deposited on the substrate using physical vapor deposition (PVD) and/or chemical vapor deposition (CVD) techniques.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: September 23, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Liang-Yuh Chen, Daniel A. Carl, Israel Beinglass
  • Publication number: 20080226271
    Abstract: An evaporation crucible is described. The evaporation crucible (100; 300; 400; 500) includes: an electrically conductive body (120) and a cover (150; 550); the body having a first electrical connection (162) and a second electrical connection (164) for applying a heating current through the body, the body includes a chamber (130) providing a melting-evaporation area, the chamber including a chamber bottom and a chamber wall, wherein the cover forms an enclosure with the chamber; a feeding opening (134; 430) for feeding a material; and a distributor orifice (170; 571, 572) providing a vapor outlet of the enclosure.
    Type: Application
    Filed: March 6, 2008
    Publication date: September 18, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Holger Aulbach, Helmut Grimm
  • Publication number: 20080223294
    Abstract: The invention relates to a flooding chamber for coating installations, with which shorter flooding times, and therewith shorter clock cycles, can be attained. Two flooding means are therein utilized, between which a substrate is disposed symmetrically. The flooding means direct a gas jet directly onto the substrate. Hereby the substrate is fixed between the flooding means.
    Type: Application
    Filed: June 28, 2007
    Publication date: September 18, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Thomas Gebele, Andreas Lopp, Oliver Heimel