Patents Assigned to Applied Material
  • Patent number: 7393561
    Abstract: A method of increasing ALP briefly, a preferred embodiment of the present invention includes a method of increasing ALP throughput by continuously modulating gas flow in a reactor to achieve layer by layer growth on a wafer. A first reactant is introduced with a percentage of a carrier gas. After a first time interval, the first reactant flow is reduced while the carrier gas flow is increased so as to maintain an approximately constant total gas flow. When the first reactant flow reaches a minimal, predetermined amount, a second reactant flow is initiated and increased while the carrier gas flow is decreased so as to continue a constant total gas flow. The method alternatively includes introducing a substance that enhances reactant adsorption and chemisorption, either as a first applied gas that reacts with the surface or as an added ligand to the reactant. Still further alternatives include a periodic rapid thermo anneal for improving film properties, parallel wafer processing and a reactant reservoir.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: July 1, 2008
    Assignee: Applied Materials, Inc.
    Inventor: Ajit P. Paranjpe
  • Patent number: 7390429
    Abstract: A method of processing a substrate having a conductive material layer disposed thereon is provided which includes positioning the substrate in a process apparatus and supplying a first polishing composition between to the substrate. The polishing composition comprises a first chelating agent, a second chelating agent, a first corrosion inhibitor, a second corrosion inhibitor, a suppressor, a solvent, and an inorganic acid based electrolyte to provide a pH between about 3 and about 10.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: June 24, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Feng Q. Liu, Tianbao Du, Alain Duboust, Wei-Yung Hsu
  • Patent number: 7390757
    Abstract: The present invention relates to fluorinated silicate glass (FSG) with low dielectric constant and improved gap-fill characteristics. In the present method, a fluorinated silicon source, an optional fluorine source, an optional carbon source, a hydrogen source, and an oxygenator are used as the reactant gases. Inert or carrier gas(es) may also be used. In accordance with the present invention, the reactant gas mixture does not comprise a silane compound having the general formula SixHy, wherein x has a range of 1 to 2, y has a range of 4 to 6. The material deposited is thus referred to herein alternatively as “SixFy-only FSG” or “SixFy-only fluorinated oxide” (“SOFO”).
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: June 24, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Seong-Oh Woo, Jun Tae Choi
  • Patent number: 7389645
    Abstract: A method and apparatus to shield a cryogenic pump in a physical vapor deposition chamber comprising a physical vapor deposition chamber, a gasket in thermal contact with the physical vapor deposition chamber, at least one post in contact with the gasket, a radiation shield connected at the top of the post, and at least one intermediate ring in contact with the post. A method and apparatus for a radiation shield for a cryogenic pump comprising a cryogenic pump with a region upstream from the cryogenic pump, a gasket in thermal contact the region upstream from the cryogenic pump, at least one post in contact with the gasket, a radiation shield connected at the top of the post, and at least one intermediate ring in contact with the post.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: June 24, 2008
    Assignee: Applied Materials, Inc.
    Inventor: Alan A. Ritchie
  • Patent number: 7390744
    Abstract: Polishing compositions and methods for removing conductive materials and barrier materials from a substrate surface are provided. Polishing compositions are provided for removing at least a barrier material from a substrate surface by a chemical mechanical polishing process or by an electrochemical mechanical polishing process. The polishing compositions used in barrier removal may further be used after a process for electrochemical mechanical planarization process of a conductive material. The polishing compositions and methods described herein improve the effective removal rate of materials from the substrate surface with a reduction in planarization type defects.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: June 24, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Renhe Jia, Feng Q. Liu, Stan D. Tsai, Liang-Yuh Chen
  • Publication number: 20080142483
    Abstract: A method of forming a dielectric material in a substrate gap using a high-density plasma is described. The method may include depositing a first portion of the dielectric material into the gap with the high-density plasma. The deposition may form a protruding structure that at least partially blocks the deposition of the dielectric material into the gap. The first portion of dielectric material is exposed to an etchant that includes reactive species from a mixture that includes NH3 and NF3. The etchant forms a solid reaction product with the protruding structure, and the solid reaction product may be removed from the substrate. A final portion of the dielectric material may be deposited in the gap with the high-density plasma.
    Type: Application
    Filed: November 29, 2007
    Publication date: June 19, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Zhong Qiang Hua, Rionard Purnawan, Jason Thomas Bloking, Anchuan Wang, Young S. Lee, Ellie Y. Yieh
  • Publication number: 20080142208
    Abstract: A method and apparatus for heating a substrate is provided herein. In one embodiment, a substrate heater includes a vessel having an upper member including a top surface for supporting a substrate thereon; a liquid disposed within and partially filling the vessel; and a heat source for providing sufficient heat to the liquid to boil the liquid. Optionally, a pressure controller for regulating the pressure within the vessel may be provided. The substrate is heated by first placing the substrate on the support surface of the vessel of the substrate heater. The liquid contained in the vessel is then boiled. As the liquid is boiling, a uniform film of heated condensation is deposited on a bottom side of the support surface. The heated condensation heats the support surface which in turn, heats the substrate.
    Type: Application
    Filed: December 15, 2006
    Publication date: June 19, 2008
    Applicant: Applied Materials, Inc.
    Inventors: JOSEPH M. RANISH, Bruce E. Adams, Aaron M. Hunter
  • Publication number: 20080142476
    Abstract: Methods for etching quartz are provided herein. In one embodiment, a method of etching quartz includes providing a film stack on a substrate support disposed in a processing chamber, the film stack having a quartz layer partially exposed through a patterned layer; and etching the quartz layer of the film stack in a multi-step process including a first step of etching the quartz layer utilizing a first process gas comprising at least one fluorocarbon process gas and a chlorine-containing process gas; and a second step of etching the quartz layer utilizing a second process gas comprising at least one fluorocarbon process gas.
    Type: Application
    Filed: December 18, 2006
    Publication date: June 19, 2008
    Applicant: Applied Materials, Inc.
    Inventors: RENEE KOCH, Scott A. Anderson
  • Publication number: 20080145038
    Abstract: A method and apparatus for heating a substrate is provided herein. In one embodiment, a substrate heater includes a vessel having an upper member including a top surface for supporting a substrate thereon; a liquid disposed within and partially filling the vessel; and a heat source for providing sufficient heat to the liquid to boil the liquid. Optionally, a pressure controller for regulating the pressure within the vessel may be provided. The substrate is heated by first placing the substrate on the support surface of the vessel of the substrate heater. The liquid contained in the vessel is then boiled. As the liquid is boiling, a uniform film of heated condensation is deposited on a bottom side of the support surface. The heated condensation heats the support surface which in turn, heats the substrate.
    Type: Application
    Filed: December 15, 2006
    Publication date: June 19, 2008
    Applicant: Applied Materials, Inc.
    Inventors: JOSEPH M. RANISH, Bruce E. Adams, Aaron M. Hunter
  • Publication number: 20080141939
    Abstract: A electromagnet array structure including multiple electromagnetic coils captured in a rigid encapsulant, for example, of cured epoxy resin, to form a unitary free-standing structure which can be placed around the walls of a plasma processing chamber. A liquid cooling coil may also be captured in the encapsulant between the electromagnetic coils. The structure may additionally include water fittings, locating pins, through tubes for chamber bolts, and lifting brackets.
    Type: Application
    Filed: December 13, 2006
    Publication date: June 19, 2008
    Applicant: Applied Materials, Inc
    Inventors: Andrew Gillard, Anthony Vesci, Keith A. Miller
  • Patent number: 7388213
    Abstract: We have developed a method of registration of a particle beam to internal alignment targets present within photoresist areas which are to be imaged. The method does not affect the photoresist, so the quality of pattern produced in the resist after imaging is not affected. The method used for registration of the particle beam to internal alignment targets also can be used to align a pattern in real time, while the pattern is being created, with the internal alignment targets. The real time alignment during creation of a pattern image in the photoresist can be used to correct for drift, or thermal expansion, or gravitational sag, by way of example.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: June 17, 2008
    Assignee: Applied Materials, Inc.
    Inventor: Jeffrey S. Sullivan
  • Publication number: 20080138974
    Abstract: A nickel silicon alloy barrier layer formed between a metal bonding pad on an integrated circuit and a tin-based solder ball, for example, a lead-free solder. The nickel silicon alloy contains at least 2 wt % silicon and preferably less than 20 wt %. An adhesion layer may be formed between the barrier layer and the bonding pad. For copper metallization, the adhesion layer may contain titanium or tantalum; for aluminum metallization, it may be aluminum. The nickel silicon alloy may be deposited by magnetron sputtering. Commercially available NiS4.5% sputter targets have provided a superior under-bump metallization (UBM) with lead-free tin solder bumps. Dopants other than silicon/may be used to reduce the magnetic permeability and provide other advantages of the invention.
    Type: Application
    Filed: November 27, 2007
    Publication date: June 12, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Yanping Li, Jriyan Jerry Chen, Lisa Yang
  • Publication number: 20080138987
    Abstract: A silicon-on-insulator transfer wafer having a front surface with a circumferential lip around a circular recess is polished. In one version, the circular recess on the front surface of the wafer is masked by filling the recess with spin-on-glass. The front surface of the wafer is exposed to an etchant to preferentially etch away the circumferential lip, while the circular recess is masked by the spin-on-glass. The spin-on glass is removed, and the front surface of the transfer wafer is polished. Other methods of removing the circumferential lip include applying a higher pressure to the circumferential lip in a polishing process, and directing a pressurized fluid jet at the base of the circumferential lip.
    Type: Application
    Filed: February 19, 2008
    Publication date: June 12, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Raymond John Donohoe, Krishna Vepa, Paul V. Miller, Ronald Rayandayan, Hong Wang
  • Patent number: 7384867
    Abstract: Methods for the deposition of tungsten films are provided. The methods include depositing a nucleation layer by alternatively adsorbing a tungsten precursor and a reducing gas on a substrate, and depositing a bulk layer of tungsten over the nucleation layer.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: June 10, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Ken K. Lai, Jeong Soo Byun, Frederick C. Wu, Ramanujapuran A. Srinivas, Avgerinos Gelatos, Mei Chang, Moris Kori, Ashok K. Sinha, Hua Chung, Hongbin Fang, Alfred W. Mak, Michael X. Yang, Ming Xi
  • Patent number: 7383702
    Abstract: Embodiments of the present invention provide a highly uniform low cost production worthy solution for manufacturing low propagation loss optical waveguides on a substrate. In one embodiment, the present invention provides a method of forming a PSG optical waveguide on an undercladding layer of a substrate that includes forming at least one silicate glass optical core on said undercladding layer using a plasma enhanced chemical vapor deposition process including a silicon source gas, an oxygen source gas, and a phosphorus source gas, wherein the oxygen source gas and silicon source gas have a ratio of oxygen atoms to silicon atoms greater than 20:1.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: June 10, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Hichem M'Saad, Anchuan Wang, Sang Ahn
  • Patent number: 7384534
    Abstract: Electrolyte compositions and methods for planarizing a surface of a substrate using the electrolyte compositions are provided. In one aspect, an electrolyte composition includes one or more chelating agents, one or more corrosion inhibitors, and one or more pH adjusting agents. In another aspect, an electrolyte composition includes one or more chelating agents, two or more corrosion inhibitors, and one or more pH adjusting agents. In another aspect, an electrolyte composition includes one or more chelating agents, one or more corrosion inhibitors, one or more pH adjusting agents, and one or more electrically resistive additives.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: June 10, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Lizhong Sun, Feng Q. Liu, Siew Neo, Stan Tsai, Liang-Yuh Chen
  • Patent number: 7385205
    Abstract: The invention provides a method and apparatus for automatically aligning a beam of charged particles with an aperture. Thereby, a defocusing is introduced and a signal calculated based on an image shift is applied to a deflection unit. Further, a method for correction of astigmatism is provided. Thereby, the sharpness is evaluated for a set of frames generated whilst varying the signals to a stigmator.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: June 10, 2008
    Assignee: Applied Materials Israel Limited
    Inventor: Asher Pearl
  • Publication number: 20080132087
    Abstract: A method for providing a dielectric film having enhanced adhesion and stability. The method includes a post deposition treatment that densifies the film in a reducing atmosphere to enhance stability if the film is to be cured ex-situ. The densification generally takes place in a reducing environment while heating the substrate. The densification treatment is particularly suitable for silicon-oxygen-carbon low dielectric constant films that have been deposited at low temperature.
    Type: Application
    Filed: January 11, 2008
    Publication date: June 5, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Li-Qun Xia, Frederic Gaillard, Ellie Yieh, Tian H. Lim
  • Patent number: 7381116
    Abstract: A polishing apparatus that employs a polishing media retention arrangement to prevent slippage or wrinkles in the polishing media during polishing. The polishing media is drawn against a support surface by a vacuum applied between the polishing media and the support surface. Also, a porous layer may be placed between the polishing media and the support surface to form dimples in the polishing media upon the application of vacuum. An alternative arrangement draws the polishing media against a carrier and the substrate to be polished.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: June 3, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Phillip R. Sommer, Paul Butterfield
  • Patent number: 7381052
    Abstract: An apparatus for processing substrates is disclosed. In one embodiment, the apparatus includes a housing and a plurality of stacked cell structures in the housing. An actuator is adapted to move the plurality of stacked cell structures inside of the housing while substrates in the stacked cell structures are being heated.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: June 3, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Jun Zhao, David Quach, Timothy Weidman, Rick J. Roberts, Farhad Moghadam, Dan Maydan