Abstract: Apparatus providing a low impedance RF return current path between a shield member and a pedestal in a semiconductor wafer processing chamber. The return path reduces RF voltage drop between the shield member and the pedestal during processing. The return path comprises a conductive strap connected to the pedestal and a conductive bar attached to the strap. A toroidal spring makes multiple parallel electrical connections between the conductive bar and the shield member. A support assembly, attached to a collar on the chamber wall, supports the conductive bar.
Type:
Grant
Filed:
November 16, 1998
Date of Patent:
April 24, 2001
Assignee:
Applied Materials, Inc.
Inventors:
Ayad Al-Shaikh, Michael Rosenstein, Bradley O. Stimson, Jianming Fu, Praburam Gopalraja
Abstract: The present invention provides a method and apparatus for delivering one or more rinse agents to a surface, such as a polishing pad surface and preferably one or more polishing fluids. The invention also provides a method of cleaning one or more surfaces, such as a polishing pad surface and a substrate surface, by delivering a spray of one or more rinse agents to the surface and, preferably, causing the rinse agent to flow across the surface from a central region to an outer region where unwanted debris and material is collected.
Type:
Grant
Filed:
October 1, 1998
Date of Patent:
April 24, 2001
Assignee:
Applied Materials, Inc.
Inventors:
Boris Fishkin, Charles C. Garretson, Peter McKeever, Thomas H. Osterheld, Gopalakrishna B. Prabhu, Doyle E. Bennett, Benjamin A. Bonner, Sidney Huey
Abstract: The invention is embodied in a plasma reactor having a vacuum chamber with a cylindrical side portion and a ceiling at a certain height above the top of the cylindrical side portion, a wafer-holding pedestal near the bottom of the vacuum chamber, gas injection ports near the cylindrical side portion and a vacuum pump, the reactor including a generally planar disk-shaped conductive ceiling electrode adjacent the ceiling, a helical coil antenna having a bottom winding near the top of the cylindrical side portion and a top winding generally corresponding to the second diameter near the planar disk-shaped conductive ceiling electrode, the helical coil antenna substantially spanning the height between the top of the cylindrical side portion and the ceiling, and a switch for individually connecting each one of the coil antenna, the ceiling electrode and the wafer pedestal to one of (a) a respective RF power source or (b) ground or (c) a floating potential (i.e., unconnected to any potential source).
Type:
Grant
Filed:
July 7, 1998
Date of Patent:
April 24, 2001
Assignee:
Applied Materials, Inc.
Inventors:
Romuald Nowak, Kevin Fairbairn, Fred C. Redeker
Abstract: A carrier head for a chemical mechanical polishing apparatus has a plurality of independently movable rods. The rods both apply pressure and substrate surround the substrate to provide a retainer.
Abstract: A polishing pad for use in a chemical mechanical polishing system is provided. The pad is mounted to a rotatable platen and comprises a polishing surface and a deflection surface which provides a desired degree of rigidity and compliance to the pad when brought into contact with a substrate. The deflection surface may comprise one or more passageways extending through the pad which vent to atmosphere. In one embodiment, the deflection area defines a raised area and a recessed area. The raised area provides a mounting surface for the platen while the recessed area allows for compliance of the pad. In another embodiment, the deflection area comprises a plurality of channels defining a plurality of slanted protrusions. The channels may be non-intersecting such that the slanted protrusions are elongated portions disposed on the pad. Alternatively, the channels may be intersecting such that the slanted protrusions are isolated from one another and are disposed on the pad in spaced relation.
Type:
Grant
Filed:
April 6, 1999
Date of Patent:
April 17, 2001
Assignee:
Applied Materials, Inc.
Inventors:
Robert D. Tolles, Steven T. Mear, Gopalakrishna B. Prabhu, Steven Zuniga, Hung Chen
Abstract: A stand-off pad, and method of fabricating the same, for supporting a workpiece in a spaced apart relation to a workpiece support chuck. More specifically, the wafer stand-off pad is fabricated of a polymeric material, such as polyimide, which is disposed upon the support surface of the chuck. The stand-off pad maintains a wafer, or other workpiece, in a spaced apart relation to the support surface of the chuck. The distance between the underside surface of the wafer and the chuck is defined by the thickness of the stand-off pad. This distance should be larger than the expected diameter of contaminant particles that may lie on the surface of the chuck. In this manner, the contaminant particles do not adhere to the underside of the wafer during processing and the magnitude of the chucking voltage is maintained between the workpiece and the chuck.
Type:
Grant
Filed:
January 31, 1997
Date of Patent:
April 17, 2001
Assignee:
Applied Materials, Inc.
Inventors:
Ananda H. Kumar, Shamouil Shamouilian, Hyman J. Levinstein, Vijay Parkhe
Abstract: An aluminum sputtering process, particularly useful for filling vias and contacts of high aspect ratios formed through a dielectric layer and also usefull for forming interconnects that are highly resistant to electromigration. A liner or barrier layer is first deposited by a high-density plasma (HDP) physical vapor deposition (PVD, also called sputtering) process, such as is done with an inductively coupled plasma. If a contact is connected at its bottom to a silicon element, the first sublayer of the liner layer is a Ti layer, which is silicided to the silicon substrate. The second sublayer comprises TiN, which not only acts as a barrier against the migration of undesirable components into the underlying silicon but also when deposited with an HDP process and biased wafer forms a dense, smooth crystal structure. The third sublayer comprises Ti and preferably is graded from TiN to Ti. Over the liner layer, an aluminum layer is deposited in a standard, non-HDP process.
Abstract: An apparatus for processing a workpiece by delivering ions to the workpiece, which apparatus includes a processing chamber, a workpiece support having a workpiece support surface in the chamber, a sputtering target in the chamber and a coil for creating an inductively coupled plasma to sputter material from the target, ionize the sputtered material and direct the ionized, sputtered material at the workpiece. The coil is connected to receive an RF current for establishing in the coil an RF voltage having a peak-to-peak amplitude which varies between a minimum value at a first location along the circumference and a maximum value at a second location along the circumference, the first and second locations being substantially diametrically opposite one another, the RF voltage variation producing a corresponding variation in plasma density around the central axis.
Abstract: A general method of the invention is to provide a polymer-hardening precursor piece (such as silicon, carbon, silicon carbide or silicon nitride, but preferably silicon) within the reactor chamber during an etch process with a fluoro-carbon or fluoro-hydrocarbon gas, and to heat the polymer-hardening precursor piece above the polymerization temperature sufficiently to achieve a desired increase in oxide-to-silicon etch selectivity. Generally, this polymer-hardening precursor or silicon piece may be an integral part of the reactor chamber walls and/or ceiling or a separate, expendable and quickly removable piece, and the heating/cooling apparatus may be of any suitable type including apparatus which conductively or remotely heats the silicon piece.
Type:
Grant
Filed:
October 8, 1998
Date of Patent:
April 17, 2001
Assignee:
Applied Materials Inc.
Inventors:
Kenneth S. Collins, Michael Rice, David W. Groechel, Gerald Zheyao Yin, Jon Mohn, Craig A. Roderick, Douglas Buchberger, Chan-Lon Yang, Yuen-Kui Wong, Jeffrey Marks, Peter Keswick
Abstract: A method for forming a BPSG film from a two-step deposition process and related apparatus and devices. A conformal layer of BPSG is deposited on a substrate. A more stable layer of BPSG is deposited at a higher deposition rate over the conformal layer. The method is suitable for filling trenches at least as narrow as 0.06 microns with aspect ratios of at least 5.5:1.
Abstract: In an apparatus for producing an electromagnetically coupled planar plasma comprising a chamber having a dielectric shield in a wall thereof and a planar coil outside of said chamber and adjacent to said window coupled to a radio frequency source, the improvement whereby a scavenger for fluorine is mounted in or added to said chamber. When a silicon oxide is etched with a plasma of a fluorohydrocarbon gas, the fluorine scavenger reduces the free fluorine radicals, thereby improving the selectivity and anisotropy of etching and improving the etch rate while reducing particle formation.
Abstract: A cathode assembly having a pedestal and a detachable susceptor. Various contact assemblies containing a canted spring are utilized to make electrical connection between the pedestal and detachable susceptor. The canted spring has coils that are tilted in one direction and joined end to end to form a doughnut shape. Such a spring creates multiple parallel self-loading electrical connections via the turns of the spring. The turns act like electrical wires to ensure reliable RF electrical energy transfer. The canted spring contact of the present invention allows for flat contact between the pedestal and the chuck.
Type:
Grant
Filed:
September 30, 1998
Date of Patent:
April 17, 2001
Assignee:
Applied Materials, Inc.
Inventors:
Gilbert Hausmann, Anantha Subramani, Peter Satitpunwaycha, Raymond Gristi, Bradley O. Stimson, Chia-Au Bill Lu, Lawrance A. Ringor, Michael N. Sugarman
Abstract: Internal surfaces of a vacuum chamber are coated with a metal or metal oxide to reduce pump down time and base pressure. The metal is sputter deposited within a partially assembled chamber from a target which comprises the metal. The chamber is then configured to process a substrate such as a silicon wafer.
Abstract: A sequence of process steps forms a fluorinated silicon glass (FSG) layer on a substrate. This layer is much less likely to form a haze or bubbles in the layer, and is less likely to desorb water vapor during subsequent processing steps than other FSG layers. An undoped silicon glass (USG) liner protects the substrate from corrosive attack. The USG liner and FSG layers are deposited on a relatively hot wafer surface and can fill trenches on the substrate as narrow as 0.8 &mgr;m with an aspect ratio of up to 4.5:1.
Abstract: A cleaning cup for holding and cleaning a pad conditioner having a conditioner head, the cleaning cup includes a spray nozzle for spraying a cleaning solution on a top side of the conditioner head. The cleaning cup further includes a plurality of support pins extending upwards from a base of the cleaning cup to receive the conditioner head thereon.
Type:
Grant
Filed:
November 2, 1998
Date of Patent:
April 17, 2001
Assignee:
Applied Materials, Inc.
Inventors:
Raijiro Koga, Hiromi Tsuruta, Takashi Kumagai, Gee Hoey, Brian J. Brown, Boris Fishkin, Fred C. Redeker
Abstract: A method of forming tungsten films on oxide layers is disclosed. The tungsten films are formed on the oxide layers by treating the oxide using a silane based gas mixture followed by the thermal decomposition of a W(CO)6 precursor. After the W(CO)6 precursor is thermally decomposed, additional layer of tungsten may be optionally formed thereon from the thermal decomposition of tungsten hexafluoride (WF6).
Type:
Grant
Filed:
July 31, 2000
Date of Patent:
April 17, 2001
Assignee:
Applied Materials, Inc.
Inventors:
Hyungsuk Alexander Yoon, Michael X. Yang, Ming Xi
Abstract: A conditioner head to condition the polishing surface of a polishing pad includes a disk having an abrasive surface to contact a polishing pad. A disk holder carries the disk and holds it in contact with the polishing pad. The disk holder has a generally flat mounting surface. A drive element rotates the disk about an axis.
Abstract: A method and apparatus for forming a titanium doped tantalum pentaoxide dielectric using a CVD process. According to the present invention a substrate is placed in the deposition chamber. A source of tantalum, a source of titanium, and an oxygen containing gas are then fed into the chamber. Thermal energy is used to decompose the source of tantalum to form tantalum atoms, and decompose the source of titanium to form titanium atoms in the deposition chamber. The titanium atoms, tantalum atoms and the oxygen containing gas then react to form a tantalum pentaoxide dielectric film doped with titanium.
Type:
Grant
Filed:
June 12, 1998
Date of Patent:
April 17, 2001
Assignee:
Applied Materials, Inc.
Inventors:
Pravin K. Narwankar, Turgut Sahin, Randall S. Urdahl, Ankineedu Velaga, Patricia Liu
Abstract: In the formation of metal vias, plugs or lines, a metal layer is deposited onto a non-planar non-metallic surface of a substrate. The metal layer is chemical mechanical polished with a first polishing pad until the metal layer is substantially planarized and a residual layer having a thickness about equal to the depth of potential microscratches, between about 200 and 1000 angstroms, remains over the non-metallic surface. The residual layer is chemical mechanical polished with a second, softer polishing pad until the non-metallic surface is exposed and the residual layer is removed.
Type:
Grant
Filed:
April 22, 1998
Date of Patent:
April 17, 2001
Assignee:
Applied Materials, Inc.
Inventors:
Boris Fishkin, Kapila Wijekoon, Ronald Lin