Abstract: A method for measuring an analyte is described that includes the steps of: i) preparing a reagent (D) in which an enzyme (A) and an enzyme (B) coexist in the absence of the analyte; ii) bringing the analyte into contact with the enzyme (A) and the enzyme (B) so that the enzyme (A) acts on the analyte to produce a product (E), on which the enzyme (B) does not substantially act, from the analyte; iii) producing a product (C) by allowing the enzyme (A) or an enzyme (F) that is different from the enzyme (A) that acts on the analyte to produce a product (C) to act on the analyte and/or the product (E); and iv) detecting the product (C) by the enzyme (B).
Type:
Grant
Filed:
March 11, 2013
Date of Patent:
August 12, 2014
Assignees:
ARKRAY, Inc., Kikkoman Biochemifa Company
Inventors:
Koji Sugiyama, Satoshi Yonehara, Kazuhiko Shimoji
Abstract: A metabolic syndrome relieving agent that is free from a problem of side effects and can be taken for a long term is provided. Aurapten is used as an agent for relieving a metabolic syndrome. Since aurapten has functions of activating PPAR? and PPAR?, promoting the secretion of adiponectin in adipocytes and inhibiting the generation of VLDLs in hepatic cells, it is possible to prevent or treat diseases such as insulin resistance, hyperinsulinism, type 2 diabetes, obesity, visceral fat obesity, hypertension, hyperlipemia, arteriosclerosis and the like and thus prevent or treat the metabolic syndrome. Also, as understood from the fact that citrus fruits such as a hassaku orange, a sweet summer orange or the like containing aurapten have been eaten for many years, they have no problems in terms of safety and have a low calorie content, and therefore, they can be taken for a long term.
Abstract: A lancing device (A) includes a lancing adjustment mechanism for adjusting the lancing depth of a lancet (L) into a target portion (99) by operating an operation member (20c). The lancing adjustment mechanism is designed to provide a nonlinear relationship between the lancing depth of the lancet (L) into the target portion (99) and the operation amount of the operation member (20c). With this arrangement, it is possible to suitably adjust bleeding at the lanced portion, thereby improving the operationality of the lancing device (A).
Abstract: A calibration method that enables calibration easily in a short time in a measurement of hemoglobin A1c by use of a separation analysis is provided. In a measurement of a hemoglobin A1c amount by use of a separation analysis, a one-point calibration using a single calibration standard is performed to obtain calibration data to be used for correcting a measured value.
Abstract: Provided are a sample analysis method using capillary electrophoresis capable of enhancing analysis accuracy, a solution for capillary electrophoresis, and a sample analysis kit. The sample analysis method includes separating and/or detecting a substance to be analyzed in a sample through capillary electrophoresis, in which the substance to be analyzed is separated and/or detected in the presence of a pH buffer substance and a non-surfactant-type zwitterionic substance. Further, the solution for capillary electrophoresis contains a pH buffer substance, a non-surfactant-type zwitterionic substance, and water.
Abstract: A method for measuring a target object in a sample by using an oxidase, wherein the influence of dissolved oxygen in the sample can be corrected, is provided. The method comprises: obtaining measurement values by causing the target object in the sample to react with the oxidase under different conditions of two or more types; and performing a correction based on the obtained two or more measurement values and a correction method preliminarily set so as to correct the influence of dissolved oxygen in the sample.
Abstract: A dry test strip for measuring calcium is comprising a support, a reagent layer provided on the support, and a reagent holding layer provided on the reagent layer, and containing, as reagents, o-cresolphthalene complexone, a magnesium selective masking agent, and a pH buffer for adjusting the pH of the environment for reaction of the o-cresolphthalene complexone with calcium to 10.0-11.0, wherein such reagents are present in either the reagent layer or the reagent holding layer or the both layers.
Abstract: The present invention relates to an enzyme electrode including: a carbon particle; a metal particle held on the carbon particle, the metal particle having a catalytic activity against a redox reaction; a redox enzyme. The enzyme electrode of the present invention further includes a high-resistance particle enhancing an electrical resistance, the high-resistance particle being chemically stable. The high-resistance particle contains an inorganic substance, for example. The inorganic substance is aluminum oxide or smectite, for example.
Abstract: Excitation light of two wavelengths is incident to an optical crystal from a first face side, and a terahertz wave THzb is generated from a second face, and the excitation light that has passed through the optical crystal is reflected, made incident to the optical crystal from the second face side, and a terahertz wave THza is generated from the first face. Terahertz waves with similar characteristics to each other are thereby generated reliably in plural directions.
Abstract: This aims to provide an analyzing tool including a substrate, a first electrode formed on the substrate and having an action pole, a second electrode formed on the substrate and having an opposed pole, and a first regulating element for regulating such a contact area in the action pole as to contact a specimen. The analyzing tool further comprises second regulating elements for regulating the effective area for electron transfers in at least one of the action pole and the opposed pole.
Abstract: When continuous user biometric information is transmitted to a server device continuously from a handheld device used by a user, the server device can be caused to receive a required measurement value efficiently at a required time, select information desired by the user on the basis of the measurement value and user peripheral information, and provide the user with the information reliably, without imposing excessive communication charges and the like. A server device 140 is used together with a handheld device 110 that transmits the user peripheral information to the server device and receives the information transmitted from the server device.
Type:
Grant
Filed:
April 9, 2010
Date of Patent:
July 1, 2014
Assignee:
ARKRAY, Inc.
Inventors:
Koji Katsuki, Go Shionoya, Yasuhide Kusaka, Yosuke Murase
Abstract: A method for recovering a metal, capable of recovering a metal easily without requiring the use of an organic medium, is provided. A first complex between a first chelating agent and a metal present in a sample is formed in a first mixture prepared by mixing the first chelating agent and the sample. Then, the first complex is recovered from the first mixture, and a second complex between the metal derived from the first complex and a second chelating agent is formed in a second mixture prepared by mixing the first complex and an aqueous solution of the second chelating agent. The aqueous solution is under the pH conditions where the first chelating agent can be insoluble in the aqueous solution. Then, a liquid fraction containing the second complex is recovered from the second mixture. Thus, the metal can be recovered.
Abstract: The present invention provides a reagent for measuring a degree of oxidative stress that includes a compound represented by the following general formula (I) or a salt thereof, and a method of measuring a degree of oxidative stress using the reagent for measuring a degree of oxidative stress. In the general formula (I), R1, R2, R3 and R4 each independently represent a hydrogen atom, an ethyl group, an isopropyl group, a hydroxyalkyl group that has 1 to 4 carbon atoms, or a phenyl group, and at least one of R1, R2, R3 or R4 represents an isopropyl group, a hydroxyalkyl group having 1 to 4 carbon atoms, or a phenyl group.
Abstract: A probe for detecting a polymorphism at position ?1639 of the VKORC1 gene, the probe comprising an oligonucleotide having a nucleotide sequence having a length of 10 to 50 nucleotides, which nucleotide sequence comprises the nucleotides 80 to 89 of SEQ ID NO:1 or 2 and has a homology to SEQ ID NO:1 or 2 except that the nucleotide corresponding to the nucleotide at position 80 in SEQ ID NO:1 or 2 is cytosine, which nucleotide corresponding to the nucleotide at position 80 is labeled with a fluorescent dye.
Abstract: [Object] To provide a method for measuring a target component in an erythrocyte-containing specimen with high reliability while suppressing the influence of the Ht value of the specimen. [Solution to Problem] In the measurement method of the present invention, first, prior to measurement, a relationship between amounts of the target component and a plurality of signals corresponding thereto is provided. Then, a plurality of signals derived from the target component in the erythrocyte-containing specimen are acquired with a biosensor. With reference to the relationship, the amount of the target component in the specimen is determined based on the thus-acquired plurality of signals.
Abstract: An analysis apparatus is provided with a storage tank, an injection nozzle, a syringe, a collection nozzle, a test sample tank, a microchip having two or more separation channels, detectors, a waste liquid tank, a controller, and a power supply. The collection nozzle collects a specimen which becomes a test sample from a test sample container housing the specimen, and transfers the specimen to the test sample tank. The separation channels separate characteristic components contained in the test sample. The injection nozzle is distanced from the collection nozzle and injects the test sample from the test sample tank into the separation channels. The detectors detect the separated characteristic components in the separation channels.
Type:
Grant
Filed:
August 25, 2011
Date of Patent:
June 24, 2014
Assignee:
ARKRAY, Inc.
Inventors:
Koji Sugiyama, Daisuke Matsumoto, Yasunori Shiraki, Satoshi Yonehara
Abstract: The present invention provides a lancet (X1) which includes a case (1) including an internal space (10), and a lancing unit (2) which includes a lancing needle (20) and which is movable within the internal space (10) in an advancing direction from a wait position to an advanced position. The case (1) includes a main body (11) accommodating the lancing unit (2), and a cap (12) which is molded integral with the main body (11) and detachable from the main body (11). The lancing unit (2) includes a cover portion (22) for covering a portion of the lancing needle (20) on the advancing side, for example. The cover portion (22) is detachable together with the cap (12) by exerting a rotational force for rotating the cap (12) and a pulling force for causing relative movement of the cap (12) in the advancing direction for exposing a front end of the lancing needle (20).
Abstract: The present invention provides a stabilizer that can stabilize a salt of 10-(carboxymethylaminocarbonyl)-3,7-bis(dimethylamino)phenothiazine or a derivative thereof even under the existence of moisture or under light irradiation. A compound described in at least one of (1) and (2) below is used as the stabilizer of the salt of 10-(carboxymethylaminocarbonyl)-3,7-bis(dimethylamino)phenothiazine or the derivative thereof.
Abstract: A polymorphism-detecting probe, an amplification primer and the use thereof are provided to enable simple and highly reliable determination of different polymorphisms in an EGFR gene.
Abstract: The present invention provides a method of pretreating a sample containing a glycated amine as an analyte, thereby enabling highly reliable measurement of a glycated amine. A glycated amino acid in the sample is degraded by causing a fructosyl amino acid oxidase (FAOD) to act thereon, and thereafter, a FAOD further is caused to act on the glycated amine as the analyte in the sample to cause a redox reaction. The amount of the glycated amine is determined by measuring the redox reaction. The substrate specificity of the FAOD caused to act on the glycated amino acid may be either the same as or different from that of the FAOD caused to act on the glycated amine. When using the same FAOD, a FAOD is caused to act on the glycated amino acid to degrade it, and thereafter, the sample is treated with a protease to inactivate the FAOD and also to degrade the glycated amine.