Patents Assigned to Foundation
  • Patent number: 10603307
    Abstract: Compositions and methods are provided that are useful for diagnosing, treating, and monitoring alcohol dependence and disorders, susceptibility to alcohol dependence disorders, as well as drug related dependence and disorders. The methods include treating patients with an antagonist of the serotonin receptor 5-HT3 for such disorders, wherein the patient's serotonin transporter gene SLC6A4 is known to have particular genotypes.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: March 31, 2020
    Assignee: University of Virginia Patent Foundation
    Inventor: Bankole A. Johnson
  • Patent number: 10604480
    Abstract: The invention provides compounds of formula I and II and salts thereof, wherein R1, R2, Y, R3, and R4 have any of the meanings described in the specification, as well as compositions comprising such compounds and salts, and methods for treating cancer using such compounds and salts.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: March 31, 2020
    Assignees: Rutgers, The State University of New Jersey, The Research Foundation for the State University of New York
    Inventors: David J. Augeri, Anthony F. Bencivenga, Adam Blanden, Darren R. Carpizo, John A. Gilleran, Spencer David Kimball, Stewart N. Loh, Xin Yu
  • Patent number: 10604756
    Abstract: The present invention relates to methods for protecting against damage caused by radiation and/or chemotherapy, and methods for treating bone marrow damage by reducing/inhibiting Latexin expression and/or Latexin activity. The methods comprise administering to a subject in need thereof a pharmaceutical composition comprising an antagonist that reduces expression and/or activity of latexin, wherein latexin is a latexin polynucleotide variant and/or a latexin polypeptide variant that binds to the antagonist.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: March 31, 2020
    Assignee: University of Kentucky Research Foundation
    Inventors: Gary Van Zant, Ying Liang, Yi Liu
  • Patent number: 10602915
    Abstract: The present invention relates to a trans-platform apparatus including a main platform and an operating device. The trans-platform apparatus of the present invention has the advantage of performing complex and various operations by inserting a maximum number/size of operating devices through a minimal number of openings within an operating space. In addition, since the trans-platform apparatus of the present invention does not use an additional connecting member for a spin shaft, the configuration thereof is further simplified, the operation thereof is easier, and power can be efficiently transmitted to an operating means. The trans-platform apparatus of the present invention is applicable to various fields including medical devices, and an engine room or a device for operating the inside of a radiator.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: March 31, 2020
    Assignee: Catholic Kwandong University Industry Foundation
    Inventor: Chee Soon Yoon
  • Patent number: 10604785
    Abstract: An unprecedented mechanism of ubiquitination that is independent of E1 and E2 enzymes, instead relying on activation of ubiquitin by ADP-ribosylation, and which is mediated by members of the SidE effector family encoded by the bacterial pathogen Legionella pneumophila is disclosed. The herein disclosed method demonstrates a method in which ubiquitination can be carried out by a single enzyme. In addition, the present disclosure also provides compositions that may be used in ubiquitination assays and/or methods of screening active substance that may inhibit the ubiquitination process.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: March 31, 2020
    Assignee: Purdue Research Foundation
    Inventors: Zhao-Qing Luo, Jiazhang Qiu, Chittaranjan Das, Michael Sheedlo
  • Patent number: 10604737
    Abstract: The present disclosure relates to a phage-based matrix for inducing stem cell differentiation and a method for preparing the same. More specifically, the present disclosure relates to a composition for inducing differentiation of stem cells, which includes a phage-based matrix in which a gradient of stiffness is controlled by crosslinking a recombinant phage with a polymer, and a method for preparing a phage-based matrix for stem cell differentiation. According to the present invention, the method of the present disclosure provides a physical and mechanical niche environment created by the formation of a nanofibrous structure of the phage whose stiffness is controlled, thereby promoting the differentiation of stem cells into target cells. Therefore, it can be applied to a tissue matrix platform as a variety of conventional tissue engineering materials.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: March 31, 2020
    Assignee: Pusan National University Industry-University Cooperation Foundation
    Inventor: So Young Yoo
  • Patent number: 10603062
    Abstract: Pericardial modification devices and methods can be used for the treatment of heart conditions. For example, this document describes devices and methods for treating heart failure with preserved ejection fraction, including diastolic heart failure, by performing a pericardial modification procedure. In one example embodiment, a method for treating diastolic heart failure includes creating an opening in a patient's pericardial tissue, or removing a portion of the patient's pericardial tissue. The creation of the opening or the removing of the pericardial tissue reduces pressure exerted by the pericardial tissue on the patient's heart. The pericardial modification procedures are performed while avoiding trauma to the epicardial surface of heart as well as the phrenic nerves.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: March 31, 2020
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Samuel J. Asirvatham, Barry A. Borlaug, Vojtech Melenovsky
  • Patent number: 10608169
    Abstract: A magnetic device includes a conductive layer into which current can be injected in a first direction, the conductive layer causing spin Hall effect or Rashba effect. A ferromagnetic layer is disposed in contact with the conductive layer such that the ferromagnetic layer and the conductive layer are stacked on each other, a magnetization direction of the ferromagnetic layer being switched. A spin filter structure has a fixed magnetization direction, the spin filter structure being disposed on at least one of the opposite side surfaces of the first direction of the conductive layer to inject spin-polarized current into the conductive layer.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: March 31, 2020
    Assignee: Korea University Research and Business Foundation
    Inventors: Young Keun Kim, Kyung-Jin Lee, Gyungchoon Go
  • Patent number: 10604487
    Abstract: The present invention relates to a pharmaceutical composition for preventing or treating inflammatory bowel disease, containing, as an active ingredient, a pyridinol derivative or a pharmaceutically acceptable salt thereof. A pyridinol derivative represented by chemical formula 1 or a pharmaceutically acceptable salt thereof has an excellent colitis inhibitory effect in an inflammatory bowel disease model, and thus can be useful as a medicine for preventing or treating inflammatory bowel disease.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: March 31, 2020
    Assignees: Research Cooperation Foundation of Yeungnam University, Industry-University Cooperation Foundation Hanyang University Erica Campus
    Inventors: Byeong-Seon Jeong, Jung-Ae Kim, Tae-gyu Nam
  • Patent number: 10607717
    Abstract: The invention is directed to methods for selecting a treatment option for an activated B cell-like diffuse large B cell lymphoma (ABC DLBCL) subject, a germinal center B cell-like diffuse large B cell lymphoma (GCB DLBCL) subject, a primary mediastinal B cell lymphoma (PMBL) subject, a Burkitt lymphoma (BL) subject, or a mantle cell lymphoma (MCL) subject by analyzing digital gene expression data obtained from the subject, e.g., from a biopsy sample.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: March 31, 2020
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, British Columbia Cancer Agency Branch, Arizona Board of Regents on behalf of the University of Arizona, Universitat de Barcelona, Hospital Clinic de Barcelona, The Cleveland Clinic Foundation, Board of Regents of the University of Nebraska, Oregon Health and Science University, Julius-Maximilians-University of Würzburg, Oslo University Hospital HF
    Inventors: Louis M. Staudt, George W. Wright, David William Scott, Joseph M. Connors, Randy D. Gascoyne, Lisa Rimsza, Elias Campo Guerri, Raymond Tubbs, Timothy C. Greiner, James Robert Cook, Kai Fu, Paul Michael Williams, Chih-Jian Lih, Elaine S. Jaffe, Rita M. Braziel, Andreas Rosenwald, Erlend B. Smeland, Wing C. Chan, German Ott, Jan Delabie, Dennis Weisenburger
  • Patent number: 10604782
    Abstract: A cell-based assay for identifying a compound that inhibits iron transport in Gram-negative bacteria, engineered bacterial cells, and kits for conducting the same. The assay involves contacting a candidate compound with an engineered Gram-negative bacteria in the presence of iron for a sufficient period of time, exposing the reaction solution to an energy source to generate the detectable signal, and detecting changes in the detectable signal in the reaction solution over time. The engineered Gram-negative bacteria comprises an iron transport protein on its outer membrane that comprises an amino acid residue that has been engineered with a detectable label that generates a detectable signal. The changes in the detectable signal in the assay system over time correspond to the effect of the candidate compound on iron transport in the Gram-negative bacteria.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: March 31, 2020
    Assignee: Kansas State University Research Foundation
    Inventors: Phillip E. Klebba, Salete M. Newton, Brittany L. Nairn, Mathew Hanson
  • Patent number: 10609057
    Abstract: A method for detecting intrusion is provided using a combination of two AIS algorithms: Negative Selection Algorithm (NSA) and Dendritic Cell Algorithm (DCA). The method includes the following steps, or some functional subset of these steps: periodic monitoring of a data processing system for anomalous behavior that may indicate the presence of an intruder or an undesirable software; using the NSA for the generation of a population of detectors that are used for detecting anomalies in the monitored system via a matching criterion; using the DCA (which runs in parallel to the NSA) to sample traffic and signals coming in or out of the data processing system; using an aggregation system to combine the individual decisions of the NSA and the DCA to form a single final decision.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: March 31, 2020
    Assignee: Research Foundation of the City University of New York
    Inventors: Obinna Igbe, Tarek Saadawi, Ihab Darwish
  • Patent number: 10603006
    Abstract: Predicting gastrointestinal impairment may involve obtaining intestinal sounds of a patient to generate audio data, identifying predefined spectral events in the audio data that are predictive of subsequent gastrointestinal impairment, the spectral events being defined by predefined parameters, and predicting the likelihood of subsequent gastrointestinal impairment relative to the identified spectral events.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: March 31, 2020
    Assignee: University of Tennessee Research Foundation
    Inventor: John W. Cromwell
  • Patent number: 10603503
    Abstract: Methods for terminating fibrillation in a fibrillating heart employing nanosecond pulsed electric fields (nsPEFs) are disclosed. nsPEF defibrillation demonstrates its effectiveness as a new defibrillation modality, achieving reliable defibrillation with energies that are an order of magnitude lower than those needed for conventional defibrillation (millisecond shocks with mono- and bi-phasic waveforms). Tests did not reveal any negative effect of nsPEF defibrillation on cardiac tissue, in particular, cardiac tissue treated with nsPEFs does not exhibit a baseline shift in the optical transmembrane potential signal (distinctive feature that indicates electroporation), or changes in action potential duration or shape. The mechanism of nsPEF defibrillation is likely different from conventional defibrillation since it does not rely on membrane charging but on the basis of displacement currents that flow within nanoseconds after the shock is applied.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: March 31, 2020
    Assignee: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventors: Andrei G. Pakhomov, Christian W. Zemlin
  • Patent number: 10604418
    Abstract: The present invention relates to a porous oxide semiconductor including three-dimensionally interconnected nanopores, mesopores, and macropores, a method for preparing the porous oxide semiconductor, and a gas sensor including the porous oxide semiconductor as a gas sensing material. The nanopores have a diameter of 1 nm to less than 4 nm, the mesopores have a diameter of 4 nm to 50 nm, and the macropores have a diameter of 100 nm to less than 1 ?m. The oxide semiconductor gas sensor of the present invention exhibits ultrahigh response and ultrafast response to various analyte gases due to the presence of the controlled nanopores, mesopores, and macropores.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: March 31, 2020
    Assignee: Korea University Research and Business Foundation
    Inventors: Jong Heun Lee, Yun Chan Kang, Jee-Uk Yoon, Seung Ho Choi
  • Patent number: 10605970
    Abstract: An optical filter may reduce the frequency and/or severity of photophobic responses or for modulating circadian cycles by controlling light exposure to cells in the human eye in certain wavelengths, such as 480 nm and 590 nm, and a visual spectral response of the human eye. The optical filter may disrupt the isomerization of melanopsin in the human eye reducing the availability of the active isoform, whereas the attenuation of light weighted across the action potential spectrum of the active isoform attenuates the phototransduction cascade leading to photophobic responses. Embodiments of an optical filter are described. In one embodiment an optical filter may be configured to transmit less than a first amount of light in certain wavelengths, and to transmit more than a second amount of light weighted across the visual spectral response. Methods of use and methods of manufacturing optical filters are also described.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: March 31, 2020
    Assignee: University of Utah Research Foundation
    Inventors: Steven M. Blair, Bradley Jay Katz
  • Patent number: 10602951
    Abstract: The invention includes, in part, methods and apparatus for determining the status of labor in a pregnant subject. In some embodiments of the invention, organ-level uterine function is determined as a measure of the status of labor such as non-labor (e.g., false labor), latent phase labor, active phase labor, or post-delivery.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: March 31, 2020
    Assignee: UNIVERSITY OF TENNESSEE RESEARCH FOUNDATION
    Inventor: Roger C. Young
  • Patent number: 10607674
    Abstract: A two-terminal stochastic switch is disclosed. The switch includes a magnetic tunnel junction (MTJ) stack, an access switch controlled by a first terminal and coupled to the MTJ stack, such that when the access switch is on, electrical current flows from a first source coupled to the MTJ stack, through the MTJ stack, and through the access switch to a second source, and a digital buffer coupled to the MTJ stack and the access switch which is configured to transform an analog signal associated with a voltage division across the MTJ stack and the access switch to a digital signal, output of the digital buffer forming a second terminal.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: March 31, 2020
    Assignees: Purdue Research Foundation, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Kerem Yunus Camsari, Supriyo Datta, Sayeef Salahuddin
  • Patent number: 10606341
    Abstract: A system comprising: a camera configured to capture one or more images of a user's hand; and a computer configured to: receive the one or more captured images, apply a mapping function to the received one or more images, thereby yielding one or more coordinates associated with at least one feature of the user's hand, wherein the mapping function is derived from a set of labeled images that are produced by applying a machine learning algorithm to training data which comprises images of a trainer's hand, wherein the images are labeled with coordinates obtained from multiple magnetic sensors attached to the trainer's hand.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: March 31, 2020
    Assignee: TECHNION RESEARCH & DEVELOPMENT FOUNDATION LIMITED
    Inventors: Aaron Wetzler, Ron Kimmel
  • Patent number: D879544
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: March 31, 2020
    Assignee: Purdue Research Foundation
    Inventors: Klein Erhekabor Ileleji, Heeju Kim