Abstract: A storage unit is provided for removably storing an in vivo imaging capsule. The capsule may have a housing and an optical dome. The storage unit may include a recessed space formed for accepting the capsule. A magnet for magnetically activating and deactivating the capsule may be provided in the storage unit, for example in the lid. The storage unit may also include a capsule holding unit comprising at least two protruding elements to removably hold the capsule in the storage unit, wherein the protruding elements are positioned to grip the capsule housing.
Abstract: A device for in-vivo detection comprises a housing having an optical window and enclosing an imager that is configured to image the optical window. An external surface of the optical window has trypsin immobilized thereon, and may also be coated with a steric barrier protection, which may be polyethylene glycol (PEG). A trypsin-Alpha-1-antitrypsin complex formed on the window may have an affinity to a binding agent, which is tagged by a tag selected from a group consisting of a colorant, a fluorescent moiety, and a radioactive moiety.
Type:
Application
Filed:
November 2, 2008
Publication date:
April 21, 2011
Applicant:
GIVEN IMAGING LTD.
Inventors:
Noam Emanuel, Emil-Israel Katz, Elena Khazanov, Abraham Rubinstein, Yechezkel Barenholz, Abdel Kareem Azab
Abstract: A system and method for controlling a device in vivo. The system and method may utilize a steerable receiver, typically an element that is maneuverable by a magnetic field, for controlling the movement of a device, including the direction, force and velocity of the device movement.
Abstract: Provided are a system and method for in vivo and in situ detection of body lumen conditions. The system comprises at least one interaction chamber for containing an endo-luminal sample, the interaction chamber comprising at least one indicator; at least one light source for illuminating the interaction chamber; and at least one optical detector for detecting in vivo optical changes occurring in the interaction chamber. The reaction between the indicator and sample may result in an optical change, which is detected and possibly imaged by the optical detector.
Abstract: The present invention provides an in-vivo imaging device comprising at least one imager and an associated optical system, at least the optical system located in an optical dome of the imaging device, the optical dome having a tip, the optical system comprising an optical lens, the optical system having a given effective focal length f, the optical lens being located at a distance D? from the tip; wherein D?/f?6.
Abstract: A system and method may detect a transition in an image stream captured within a body lumen. One or more parameters may be computed at points corresponding to a time scale of the image stream. Transition in the values of the parameters may be identified and may indicate a location along the body lumen. The image stream may be segmented at the transition points identified.
Abstract: An in vivo imaging device and method, the device including at least one illumination source; at least one image sensor; and at least two optical systems. The optical systems have different depths of focus. A first and second image are focused onto the image sensor.
Abstract: The present invention provides a system and method for obtaining in vivo images. The system contains an imaging system and a transmitter for transmitting signals from a camera to a receiving system located outside a patient.
Type:
Grant
Filed:
February 28, 2006
Date of Patent:
January 18, 2011
Assignee:
Given Imaging Ltd.
Inventors:
Gavriel J. Iddan, Dov Avni, Arkady Glukhovsky, Gavriel Meron
Abstract: A system for transfer of a signal, such as an energizing signal, to a transmitting in vivo sensing device. The in vivo device includes at least one signal transmitter and at least one signal receiving unit. The system includes an external phased array antenna. The phased array antenna receives a signal from the sensing device and then transmits a signal to the device phased in the reverse order to that of receipt the signal from the sensing device.
Abstract: A system and method for determining the path length through a body lumen, for example to a specified location, is described. A location detection system may identify the location in space of an in-vivo device over time. A path-length detection unit may use data from the location detection system to determine a path traveled by an in-vivo device. A site of interest along that path may be identified. The distance of the site of interest from at least one end point of a body lumen may be determined.
Abstract: A substantially spherical in vivo imaging device may be used for imaging body lumens in the GI tract. The imaging device may include for example a ballast weight for setting a preferred orientation of the device within the body lumen. The substantially spherical shape of the in vivo imaging device may facilitate capturing steady streams of imaging data in large body lumens. A method of manufacture is presented.
Abstract: An autonomous device that may include for example a camera, a transmitter for transmitting a signal from the camera and a storage compartment for retaining a substance in the device. A method of delivering a medicament to a patient including imaging a gastro intestinal tract with an autonomous device, identifying a target location in such tract, and releasing a medicament from the device at the target location.
Abstract: A lens holder assembly for aligning an optical system over an image sensor is described. The image sensor may be lying on a substrate. The assembly may include a lens holder aperture and at least one centering leg or protrusion which may be detached from the substrate and wherein the centering legs or protrusions may tightly abut or surround the image sensor in order to center the lens holder assembly with respect to the image sensor and to the optical system.
Abstract: The present invention relates to a system and method for displaying an image stream captured by an in vivo imaging device and for displaying an image stream in a consolidated manner.
Abstract: An in-vivo device may include an optical system, and a method for viewing in-vivo sites. A dome or cover may cover an end of the device, protecting optical elements such as illumination devices or imagers, which may be behind the dome. The dome may be forward projecting and may have a convex shape. The field of view of the imager may be for example forward looking. Illumination element(s) and a receiving unit or imager may be disposed behind a single optical window, which for example may enable obtaining of images free of backscatter and stray light. The convex shape of the dome may be defined such that it may have a shape having an isolated area. At least one illumination element and at least one receiving unit may be geometrically positioned (for example in the isolated area) such that rays from the illumination elements, some of which are internally reflected from the internal and/or external surface of the optical window, will not be incident on the receiving unit.
Abstract: The present invention discloses a system comprising an in vivo imaging device able to transmit in vivo data via a wireless medium, a receiver to receive in vivo data via the wireless medium, input means for entering to the receiver indications by a user, an indication storage unit to store the indications and to store data representing entering time at which the indications was entered by the user and information identifying in vivo data portions corresponding to that entering time, and a display unit to display the indications concurrently with the in vivo data portions corresponding to the entering time at which the indications was entered. The indications entered by the user may be indicative of activities of the user, condition of the user, environmental conditions next to the user and the like.
Abstract: An in vivo imaging device with a curved reflective element and for example a concave portion of an outer shell of such device. Such curved reflective element may for example reflect onto an image sensor light rays from an object where such light rays before reflection are substantially parallel to the plane of the image sensor. An in vivo imaging device with a reflective surface situated at an angle to an image sensor of such imaging device. Such an angle may be for example a 45 degree angle so that light rays that are substantially parallel to a plain of an image sensor of an imaging device may for example be reflected by the reflective surface onto the image sensor.
Type:
Grant
Filed:
May 2, 2004
Date of Patent:
September 21, 2010
Assignee:
Given Imaging Ltd.
Inventors:
Gavriel J. Iddan, Daphna Levy, Kevin Rubey, Mordechai Frisch
Abstract: The invention provides a device, and method for in vivo imaging, for example, using an in vivo imaging device including a circuit board having rigid sections and flexible sections. The circuit board may include one or more layers and an antenna may be embedded into one or more layers.
Type:
Grant
Filed:
November 8, 2005
Date of Patent:
September 21, 2010
Assignee:
Given Imaging Ltd.
Inventors:
Alex Muratayev, Ido Bettesh, Semion Khait
Abstract: A system and method for in vivo diagnosis are provided. A composition including for example a radioactive marking agent and a pharmaceutically acceptable carrier is administered to a patient and an autonomous in vivo device, which may include for example an illumination source an image sensor and a radiation and/or light detector, is used to for example facilitate the difference between. normal and pathological cells in a body lumen.
Type:
Grant
Filed:
June 28, 2004
Date of Patent:
August 31, 2010
Assignee:
Given Imaging, Ltd.
Inventors:
Mordechai Frisch, Gavriel J. Iddan, Zvika Gilad, Reuven Schreiber