Abstract: A system and method may display an image stream (200), where an original image stream may be divided into two or more subset images streams, each subset image stream being displayed simultaneously or substantially simultaneously in each time slot (210A-240D) may be variably adjusted based on a predetermined criterion. The images may be collected from an ingestible capsule traversing the GI tract.
Abstract: An in-vivo imaging device including a camera may include a frame storage device. Systems and methods which vary the frame capture rate of the camera and/or frame display rate of the display unit of in-vivo camera systems are discussed. The capture rate is varied based on physical measurements related to the motion of the camera. Alternatively, the frame capture rate is varied based on comparative image processing of a plurality of frames. The frame display rate of the system is varied based on comparative image processing of a multiplicity of frames. Both the frame capture and the frame display rates of such systems can be varied concurrently.
Abstract: Devices, systems and methods of in-vivo varix detection. For example, a system may include a processor to automatically detect a varix in an in-vivo image. The processor may automatically identify a protrusion into a lumen of a gastro-intestinal tract. The processor may automatically identify substantially blue areas of the protrusion. The processor may generate an indication to a user that a varix was detected in an in-vivo image.
Abstract: An imager and a method for real-time, non-destructive monitoring of light incident on imager pixels during their exposure to light. Real-time or present pixel signals, which are indicative of present illumination on the pixels, are compared to a reference signal during the exposure. Adjustments, if necessary, are made to programmable parameters such as gain and/or exposure time to automatically control the imager's exposure to the light. In a preferred exemplary embodiment, only a selected number of pixels are monitored for exposure control as opposed to monitoring the entire pixel array.
Type:
Grant
Filed:
September 15, 2009
Date of Patent:
April 3, 2012
Assignees:
Micron Technology, Inc., Given Imaging, Ltd.
Abstract: An in-vivo sensing system and a method for creating a summarized graphical presentation of a data stream captured in-vivo. The graphical presentation may be in the form of for example a color bar. The color bar may be a fixed display along side a streaming display of the data stream. A cursor or other indicator may move along the fixed color bar as the data stream is displayed and/or streamed so as to indicate to a health professional what part of the data stream may be currently displayed. The color content in the color bar may map out the data stream and give indication of the location of anatomical sites as well as possible locations of pathology.
Abstract: A device and system for in-vivo sensing having a relatively heavy part and a relatively light part such that the heavy and light part may be temporarily attached in-vivo. Detachment of the heavy part may be provided at a predetermined location along a body lumen. The light part upon detachment of the heavy part may for example float within a body lumen.
Type:
Grant
Filed:
December 29, 2004
Date of Patent:
March 27, 2012
Assignee:
Given Imaging, Ltd.
Inventors:
Mordechai Frisch, Zvika Gilad, Gavriel J. Iddan, Arkady Glukhovsky, Tal Davidson, Daniel Gat, Raphael Rabinovitz
Abstract: The present invention provides a system and method for obtaining in vivo images. The system contains an imaging system and a transmitter for transmitting signals from a camera to a receiving system located outside a patient.
Type:
Grant
Filed:
May 2, 2006
Date of Patent:
February 28, 2012
Assignee:
Given Imaging, Ltd.
Inventors:
Gavriel J. Iddan, Dov Avni, Arkady Glukhovsky, Gavriel Meron
Abstract: A system, device and method for constructing an in-vivo image stream from in-vivo raw data base files. The in-vivo imaging system may include, for example an in-vivo imaging device, a receiver/recorder and a computing device such as a workstation a portable device and/or a portable memory.
Abstract: The invention provides an in vivo imaging device, the device comprising a first support having thereon a first battery contact, a second support having thereon a second battery contact, a battery disposed between the first support and the second support such that the battery is in contact with the first battery contact and with the second battery contact, wherein the first battery contact is a spring and the second battery contact comprises a pin to contact the battery and a housing for the pin and a battery stopper placed between the battery and the first or second support.
Abstract: A system and method may display an image stream, where an original image stream may be divided into two or more subset images streams, each subset image stream being displayed simultaneously or substantially simultaneously. The images may be displayed fused. The images may be collected from an ingestible capsule traversing the GI tract.
Type:
Grant
Filed:
November 26, 2008
Date of Patent:
October 25, 2011
Assignee:
Given Imaging, Ltd.
Inventors:
Tal Davidson, Raphael Rabinovitz, Michael Skala, Hagai Krupnik, Eli Horn, Gavriel J. Iddan
Abstract: A method and system for in-vivo sensing includes transmitting data that relates to data stored in a memory area located in the sensing device. The data that relates to data stored in a memory area may be transmitted in a data block, and the data block may include sensory data. The data that relates to data stored in a memory area may be received, recorded, displayed, processed or used in any suitable way, for example, to generate commands to the sensing device.
Abstract: An in vivo sensing device and system may contain or be used in conjunction with an image sensor and a body lumen clearing element or agent. A method may enable clearing a body lumen for in vivo sensing while using the device of the invention.
Type:
Application
Filed:
August 7, 2008
Publication date:
September 22, 2011
Applicant:
GIVEN IMAGING LTD.
Inventors:
Elisha Rabinovitz, Daniel Gat, Shirrie Rosenthal
Abstract: A system and method may display an image stream, where an original image stream may be divided into two or more subset images streams, each subset image stream being displayed simultaneously or substantially simultaneously. Post processing may be used to fuse images shown simultaneously or substantially simultaneously. The images may be collected from an ingestible capsule traversing the GI tract.
Abstract: A device including at least one image sensor and a circuit board having a plurality of rigid sections and a plurality of flexible sections. The image sensor is disposed an a rigid section of the circuit board. The circuit board may be folded into a housing configured for in vivo sensing. An illumination source is electrically connected to a ring shaped rigid section and at least one battery is positioned between two of the rigid sections.
Abstract: An in-vivo device may include an optical system, and a method for viewing in-vivo sites. A dome or cover may cover an end of the device, protecting optical elements such as illumination devices or imagers, which may be behind the dome. The dome may be forward projecting. The field of view of the imager may be for example forward looking. Illumination element(s) and a receiving unit or imager may be disposed behind a single optical window, which for example may enable obtaining of images free of backscatter and stray light.
Type:
Grant
Filed:
June 30, 2004
Date of Patent:
August 9, 2011
Assignee:
Given Imaging Ltd.
Inventors:
Arkady Glukhovsky, Gavriel Meron, Gavriel J. Iddan
Abstract: A device and method for capturing in-vivo images allows for size or distance estimations for objects within the images. According to one embodiment of the present invention there may be provided, in an in-vivo device, at least an imager, an illumination source to provide illumination for the imager, an irradiation source to emit for example a light beam or a laser beam in a body lumen and a processor to calculate, based on image illumination parameter values, an estimate of the size of objects in a body lumen.
Type:
Grant
Filed:
October 15, 2007
Date of Patent:
August 9, 2011
Assignee:
Given Imaging Ltd.
Inventors:
Hagai Krupnik, Amit Pascal, Noam Medlinger, Raphael Rabinovitz
Abstract: A system and method may allow editing of an image stream, which may be produced by, for example, an ingestible capsule. A workstation accepts images acquired by the capsule and displays the images on a monitor as a moving image. The editing method may include, for example, selecting images which follow predetermined criteria. A shortened movie may thus be created.
Type:
Grant
Filed:
September 27, 2004
Date of Patent:
July 26, 2011
Assignee:
Given Imaging Ltd.
Inventors:
Tal Davidson, Michael Skala, Hagai Krupnik, Eli Horn
Abstract: The present invention provides, according to some embodiments, an in vivo imaging device, comprising a mount having at least one illumination source. The mount may be in electrical communication with the illumination source. The device may further include a circuit board and a contact clip for securing the mount to the circuit board and for providing electrical communication therebetween.
Abstract: An in vivo sensing device including an immobilizer that may immobilize the device in an in vivo location. The immobilizer may be activated by for example a processor or in response to an in vivo condition or in response to a signal from an outside operator.
Abstract: A device, system and method for in-vivo analysis. An autonomous in-vivo device may include a magnet to detain at least a portion of a sample collected from a body lumen; a sensor to sense a property of the detained sample portion; and a transmitter to transmit data of the sensed property.