Patents Assigned to GLOBALFOUNDRIES Inc.
  • Patent number: 10797046
    Abstract: Embodiments of the disclosure provide a resistor structure for an integrated circuit (IC) and related methods. The resistor structure may include: a shallow trench isolation (STI) region on a substrate; a resistive material above a portion of the shallow trench isolation (STI) region; a gate structure on another portion of the STI region, above the substrate, and horizontally displaced from the resistive material; an insulative barrier above the STI region and contacting an upper surface and sidewalls of the resistive material, an upper surface of the insulative barrier being substantially coplanar with an upper surface of the gate structure; and a pair of contacts within the insulative barrier, and each positioned on an upper surface of the resistive material.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: October 6, 2020
    Assignee: GLOBALFOUNDRIES, INC.
    Inventors: Jiehui Shu, Hui Zang
  • Patent number: 10795083
    Abstract: Structures for a directional coupler and methods of fabricating a structure for a directional coupler. A first section of a first waveguide core is laterally spaced from a second section of a second waveguide core. A coupling element is arranged either over or under the first section of the first waveguide core and the second section of the second waveguide core. The first and second waveguide cores are comprised of a material having a first refractive index, and the first coupling element is comprised of a material having a second refractive index that is different from the first refractive index. The first coupling element is surrounded by a side surface that overlaps with the first section of the first waveguide core and the second section of the second waveguide core.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: October 6, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Yusheng Bian, Ajey Poovannummoottil Jacob, Steven M. Shank
  • Patent number: 10795430
    Abstract: A semiconductor device is disclosed that includes, among other things, a computing device including a plurality of transistors, an activity monitor to determine an activity metric associated with the plurality of transistors, and a power controller to, responsive to the activity metric indicating a first activity level, set a power supply voltage for the plurality of transistors to a first value, and responsive to the activity metric indicating a second activity level less than the first activity level, set the power supply voltage to a second value greater than the first value and apply a first reverse back bias voltage to the plurality of transistors to increase a threshold voltage of the plurality of transistors.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: October 6, 2020
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Igor Arsovski, Kushal Kamal
  • Publication number: 20200313269
    Abstract: Power combiners having increased output power, such as may be useful in millimeter-wave devices. The power combiner comprise at least two channels, wherein each channel comprises a phase alignment circuit, wherein the phase alignment circuit comprises a first differential input subcircuit comprising a first inverter and a second inverter, and a second differential input subcircuit comprising a third inverter and a fourth inverter, wherein the first inverter, the second inverter, the third inverter, and the fourth inverter each comprise a PMOS transistor and an NMOS transistor each having an adjustable back gate bias voltage. By adjusting the back gate bias voltage, the phases of the signal through each channel may be aligned, which may increase the output power of the power combiner. Methods of increasing output power of such power combiners. Systems for manufacturing devices comprising such power combiners.
    Type: Application
    Filed: March 31, 2020
    Publication date: October 1, 2020
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: See Taur Lee, Sher Jiung Fang, Abdellatif Bellaouar
  • Patent number: 10788806
    Abstract: A method for initializing individual exposure field parameters of an overlay controller is disclosed including initializing a first control thread having a first context associated with a first product type, wherein a first layout of first exposure fields is defined for the first product type for processing in a stepper. The method further includes remapping a set of previous control state data for a set of control threads associated with other product types different than the first product type into the first layout. The other product types have layouts of second exposure fields different than the first layout. An initial set of control state data for the first control thread associated with the first product type is generated using the remapped previous control state data. The stepper is configured for processing a first substrate of the first product type using the initial set of control state data.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: September 29, 2020
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Richard P. Good, Eyup Cinar
  • Patent number: 10788877
    Abstract: Embodiments of the disclosure provide a low power multiplexer (MUX) circuit, including: a first data input coupled to an input of a first pass gate device; a second data input coupled to an input of a second pass gate device; a hold latch having an input coupled to a data output of the MUX circuit and an output coupled to an input of a supplemental pass gate device; and a pulse generator for generating a HOLD pulse signal, wherein the HOLD pulse signal is coupled to a control input of the supplemental pass gate device. The hold latch is configured to hold a previously valid output data signal of the MUX circuit until a valid input data signal is available at the first data input or the second data input.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: September 29, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Sebastian T. Ventrone, Lansing D. Pickup
  • Patent number: 10790276
    Abstract: Methods, apparatus, and systems relating to a MOSFET with ESD resistance, specifically, to a semiconductor device comprising a field-effect transistor (FET) comprising a gate, a source, and a drain, all extending parallel to each other in a first direction; at least one source electrostatic discharge (ESD) protection circuit; a source terminal disposed above and in electrical contact with the at least one source ESD protection circuit, wherein the source terminal extends in the first direction; at least one drain ESD protection circuit; and a drain terminal disposed above and in electrical contact with the at least one drain ESD protection circuit, wherein the drain terminal extends in the first direction.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: September 29, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Chien-Hsin Lee, Manjunatha Prabhu, Mahadeva Iyer Natarajan
  • Patent number: 10790204
    Abstract: Structures for testing a field effect-transistor or Kelvin field-effect transistor, and methods of forming a structure for testing a field-effect transistor or Kelvin field-effect transistor. The structure includes a test pad, a device-under-testing having one or more source/drain regions, and a metallization level arranged over the device-under-testing. The metallization level includes one or more interconnect lines that are connected with the test pad. One or more contacts, which are arranged between the metallization level and the device-under-testing, directly connect the one or more interconnect lines with the one or more source/drain regions.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: September 29, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Mankyu Yang, Vara Govindeswara Reddy Vakada, Edward Maciejewski, Brian Greene, Atsushi Ogino, Vikrant Chauhan, Prianka Sengupta
  • Patent number: 10790148
    Abstract: A method of manufacturing a semiconductor device includes forming a composite spacer architecture over sidewalls of a sacrificial gate disposed over a semiconductor layer, and the subsequent deposition of a supplemental sacrificial gate over the sacrificial gate. A recess etch of the composite spacer architecture is followed by the formation within the recess of a sacrificial capping layer. The supplemental sacrificial gate and the sacrificial gate are removed to expose the composite spacer architecture, which is selectively etched to form a T-shaped cavity overlying a channel region of the semiconductor layer. A replacement metal gate is formed within a lower region of the T-shaped cavity, and a self-aligned contact (SAC) capping layer is formed within an upper region of the T-shaped cavity prior to metallization of the device.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: September 29, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Heimanu Niebojewski, Ruilong Xie, Andrew M. Greene
  • Patent number: 10790198
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to fin structures and methods of manufacture. The structure includes: a plurality of fin structures formed of substrate material; a semiconductor material located between selected fin structures of the plurality of fin structures; and isolation regions within spaces between the plurality of fin structures.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: September 29, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Fuad H. Al-Amoody, Yiheng Xu, Rishikesh Krishnan
  • Patent number: 10790785
    Abstract: Embodiments of the present disclosure provide a circuit structure. An error amplifier of the structure includes an input terminal coupled to a voltage source, a reference terminal, and an output terminal coupled to a back-gate terminal of a power amplifier. A voltage at the output terminal of the error amplifier indicates a voltage difference between the input terminal and the reference terminal. A logarithmic current source may be coupled to the reference terminal of the error amplifier, the logarithmic current being configured to generate a reference current logarithmically proportionate to a voltage level of the voltage source. A plurality of serially coupled transistor cells, having a shared substrate and coupled between the reference terminal of the error amplifier and ground, each may include a back-gate terminal coupled to the output terminal of the error amplifier.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: September 29, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Yiching Chen, Thomas G. Mckay
  • Patent number: 10790789
    Abstract: In an exemplary structure, a transformer has a primary side and a secondary side. Output from the primary side is coupled to the secondary side. A first power supply is connected to a center tap of the primary side of the transformer. An oscillator includes a first transistor and a second transistor. The front-gate of the first transistor is connected to the drain of the second transistor and the primary side of the transformer. The front-gate of the second transistor is connected to the drain of the first transistor and the primary side of the transformer. A third transistor is connected to the first transistor and a fourth transistor is connected to the second transistor. The third and fourth transistors inject a desired frequency to the oscillator. A voltage source is connected to the back-gate of the first transistor and the back-gate of the second transistor.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: September 29, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: See T. Lee, Abdellatif Bellaouar
  • Patent number: 10790363
    Abstract: The disclosure relates to methods of forming integrated circuit (IC) structures with a metal cap on a cobalt layer for source and drain regions of a transistor. An integrated circuit (IC) structure according to the disclosure may include: a semiconductor fin on a substrate; a gate structure over the substrate, the gate structure having a first portion extending transversely across the semiconductor fin; an insulator cap positioned on the gate structure above the semiconductor fin; a cobalt (Co) layer on the semiconductor fin adjacent to the gate structure, wherein an upper surface of the Co layer is below an upper surface of the gate structure; and a metal cap on the Co layer.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: September 29, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Laertis Economikos, Kevin J. Ryan, Ruilong Xie, Hui Zang
  • Patent number: 10790376
    Abstract: The present disclosure generally relates to semiconductor structures and, more particularly, to contact structures and methods of manufacture. The structure includes: a plurality of gate structures comprising source and drain regions and sidewall spacers; contacts connecting to at least one gate structure of the plurality of gate structures; and at least one metallization feature connecting to the source and drain regions and extending over the sidewall spacers.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: September 29, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ruilong Xie, Chanro Park, Julien Frougier, Kangguo Cheng, Andre P. Labonte
  • Patent number: 10784195
    Abstract: Interconnect structures and methods of fabricating an interconnect structure. A first interconnect and a second interconnect extend in a first direction in a interlayer dielectric layer and are spaced apart from each other. A third interconnect is arranged in the interlayer dielectric layer to connect the first interconnect with the second interconnect. The first interconnect and the second interconnect have a first width, and the third interconnect has a second width that is less than the first width.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: September 22, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Jiehui Shu, Xiaoqiang Zhang, Haizhou Yin, Moosung M. Chae, Jinping Liu, Hui Zang
  • Patent number: 10784402
    Abstract: Methods of forming an integrated InGaN/GaN or AlInGaP/InGaP LED on Si CMOS for RGB colors and the resulting devices are provided. Embodiments include forming trenches having a v-shaped bottom through an oxide layer and a portion of a substrate; forming AlN or GaAs in the v-shaped bottom; forming a n-GaN or n-InGaP pillar on the AlN or GaAs through and above the first oxide layer; forming an InGaN/GaN MQW or AlInGaP/InGaP MQW over the n-GaN or n-InGaP pillar; forming a p-GaN or p-InGaP layer over the n-GaN pillar and InGaN/GaN MQW or the n-InGaP pillar and AlInGaP/InGaP MQW down to the first oxide layer; forming a TCO layer over the first oxide layer and the p-GaN or p-InGaP layer; forming a second oxide layer over the TCO layer; and forming a metal pad on the TCO layer above each n-GaN or n-InGaP pillar.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: September 22, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Srinivasa Banna, Deepak Nayak
  • Patent number: 10784243
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to uniplanar (e.g., single layer) passive circuitry and methods of manufacture. The structure includes: passive circuitry comprising plural components each of which are formed on a same wiring level; and interconnects on the same wiring level connecting the plural components of the passive circuitry.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: September 22, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventor: Venkata Narayana Rao Vanukuru
  • Patent number: 10782606
    Abstract: Disclosed are embodiments of a multi-layer stack and photolithography methods and systems that employ such a stack. The disclosed multi-layer stacks include a photoresist layer on an underlayer. The photoresist layer and underlayer are made of different materials, which are selected so that valence and conduction band offsets between the underlayer and photoresist layer create an effective electric field (i.e., so that the stack is “self-biased”). When areas of the photoresist layer are exposed to radiation during photolithography and the radiation passes through photoresist layer and excites electrons in the underlayer, this effective electric field facilitates movement of the radiation-excited electrons from the underlayer into the radiation-exposed areas of the photoresist layer in a direction normal to the interface between the underlayer and the photoresist layer.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: September 22, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Yong Liang, Lei Sun, Yongan Xu, Craig D. Higgins
  • Patent number: 10784119
    Abstract: Methods of self-aligned multiple patterning. First and second mandrels are formed over a hardmask, and a conformal spacer layer is deposited over the first mandrel, the second mandrel, and the hardmask between the first mandrel and the second mandrel. A planarizing layer is patterned to form first and second trenches that expose first and second lengthwise portions of the conformal spacer layer respectively between the first and second mandrels. After patterning the planarizing layer, the first and second lengthwise portions of the conformal spacer layer are removed with an etching process to expose respective portions of the hardmask along a non-mandrel line. A third lengthwise portion of the conformal spacer layer is masked during the etching process by a portion of the planarizing layer and defines a non-mandrel etch mask.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: September 22, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ravi Prakash Srivastava, Hsueh-Chung Chen, Steven McDermott, Martin O'Toole, Brendan O'Brien, Terry A. Spooner
  • Patent number: 10784171
    Abstract: A device is disclosed that includes a first transistor device of a first type and a second transistor device of a second type positioned vertically above the first transistor, wherein the first type and second type of transistors are opposite types. The device also includes a gate structure for the first transistor and the second transistor, wherein the gate structure comprises a first gate electrode for the first transistor and a second gate electrode for the second transistor and a gate stack spacer positioned vertically between the first gate electrode and the second gate electrode so as to electrically isolate the first gate electrode from the second gate electrode.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: September 22, 2020
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Julien Frougier, Ruilong Xie, Puneet Harischandra Suvarna