Patents Assigned to Hitachi High-Technologies Corporation
  • Patent number: 10243140
    Abstract: The present invention is a manufacturing method for manufacturing a magnetoresistive element, including a first step for oxidizing or reducing a magnetic film constituting the magnetoresistive element and a metal oxidation film constituting the magnetoresistive element, and a second step performed after the first step, wherein in the second step, in a case where the magnetic film constituting the magnetoresistive element and the metal oxidation film constituting the magnetoresistive element are oxidized, the oxidized magnetic film constituting the magnetoresistive element or the oxidized metal oxidation film constituting the magnetoresistive element is selectively reduced, and in a case where the magnetic film constituting the magnetoresistive element and the metal oxidation film constituting the magnetoresistive element are reduced, the reduced magnetic film constituting the magnetoresistive element or the reduced metal oxidation film constituting the magnetoresistive element is selectively oxidized.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: March 26, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Makoto Satake, Masaki Yamada, Kenetsu Yokogawa
  • Patent number: 10234416
    Abstract: The present invention announces a method for extending the storage life of a test reagent for quantification of ionic components in samples by using an anion sensor. The purpose of the present invention is to provide an anion sensor, wherein the storage life of the anion sensor itself may be extended, to thereby extend the storage life of the anion sensor beyond that of conventional anion sensors. According to the present invention, through adjustment of the pH of the internal solution (internal gel liquid), it is possible to provide an anion sensor that maintains consistent performance, and has longer storage life.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: March 19, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Akiko Suzuki, Tetsuyoshi Ono, Atsushi Kishioka
  • Patent number: 10234472
    Abstract: Disclosed is an automatic analysis device in which a check item at a time of an analysis start can be set in accordance with a skill level of an operator, an analysis can be performed after the check item being displayed and confirmed, and erroneous measurement caused due to a missed check can be prevented. The check item such as checking the remaining quantity of a reagent or the like displayed in a check screen before the analysis start can be set for each type of operator, each day, each time. The set check item is configured to be displayed in a screen before the analysis start, and unless the operator confirms the check item, the analysis start is not allowed in principle. An automatic analysis device which can prevent erroneous measurement caused due to a missed check of the operator before the analysis start is realized.
    Type: Grant
    Filed: April 7, 2015
    Date of Patent: March 19, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hirofumi Sasaki, Toshihide Hanawa, Tsuguhiko Satou, Yoshihiro Naitou
  • Patent number: 10233548
    Abstract: Provided is a technique capable of removing a damaged layer of a sample piece generated through an FIB fabrication sufficiently but at the minimum. A charged particle beam device includes a first element ion beam optical system unit (110) which performs a first FIB fabrication to form a sample piece from a sample, a second element ion beam optical system unit (120) which performs a second FIB fabrication to remove a damaged layer formed on a surface of the sample piece, and a first element detector (140) which detects an first element existing in the damaged layer. A termination of the second FIB fabrication is determined if an amount of the first element existing in the damaged layer becomes smaller than a predefined threshold value.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: March 19, 2019
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Terutaka Nanri, Tsuyoshi Onishi, Satoshi Tomimatsu
  • Patent number: 10229813
    Abstract: In a plasma processing apparatus including a processing chamber, a dielectric window for hermetically sealing the upper portion of the processing chamber, an induction antenna deployed above the dielectric window, a Faraday shield unit, and a control apparatus for controlling a first radio-frequency power source for supplying a radio-frequency power to the induction antenna, and a second radio-frequency power source for supplying a radio-frequency power to the Faraday shield unit, the Faraday shield unit includes a first Faraday shield having a first element, and a second Faraday shield having a second element deployed at a position adjacent to the first element, the control apparatus applying a time modulation to the radio-frequency powers that are respectively supplied to the first element and the second element, the phase of the first-element-supplied and time-modulated radio-frequency power being different from the phase of the second-element-supplied and time-modulated radio-frequency power.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: March 12, 2019
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Tadayoshi Kawaguchi, Ryoji Nishio, Tsutomu Tetsuka
  • Patent number: 10229821
    Abstract: With regard to an object of the invention, in a tandem type mass spectrometry system including three stages of a QMS, sensitivity of a daughter ion decreases due to loss resulting from destabilization of the daughter ion or a decrease in daughter ion generation rate, and an improvement insensitivity of the daughter ion is a significant issue. To solve the above-mentioned problem, the invention provides a mass spectrometry system having means of decreasing a q value of a parent ion and not decreasing a fundamental vibration frequency of the parent ion. According to the means of the invention, the invention may have effects that a mass number range of a daughter ion that may be stably transmitted is expanded, the number of vibrations of a parent ion is substantially the same as that in a first stage of the QMS, and generation efficiency of the daughter ion does not decrease and can be maintained.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: March 12, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Kiyomi Yoshinari, Yasushi Terui
  • Patent number: 10229812
    Abstract: An inspection method uses a charged particle microscope to observe a sample and view a defect site or a circuit pattern. A plurality of images is detected by a plurality of detectors and a mixed image is generated by automatically adjusting and mixing weighting factors required when the plurality of images are synthesized with each other. The sample is irradiated and scanned with a charged particle beam so that the plurality of detectors arranged at different positions from the sample detects a secondary electron or a reflected electron generated from the sample. The mixed image is generated by mixing the plurality of images of the sample with each other for each of the plurality of detectors, which are obtained by causing each of the plurality of detectors arranged at the different positions to detect the secondary electron or the reflected electron. The generated mixed image is displayed on a screen.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: March 12, 2019
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Minoru Harada, Yuji Takagi, Takehiro Hirai
  • Patent number: 10229811
    Abstract: With conventional optical axis adjustment, a charged particle beam will not be perpendicularly incident to a sample, affecting the measurements of a pattern being observed. Highly precise measurement and correction of a microscopic inclination angle are difficult. Therefore, in the present invention, in a state where a charged particle beam is irradiated toward a sample, a correction of the inclination of the charged particle beam toward the sample is performed on the basis of secondary electron scanning image information from a reflector plate. From the secondary electron scanning image information, a deviation vector for charged particle beam deflectors is adjusted, causing the charged particle beam to be perpendicularly incident to the sample. At least two stages of charged particle beam deflectors are provided.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: March 12, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yuzuru Mizuhara, Hideyuki Kazumi
  • Patent number: 10228332
    Abstract: A defect inspection method includes irradiating a sample with laser, condensing and detecting scattered light beams, processing signals that detectors have detected and extracting a defect on a sample surface, and outputting information on the extracted defect. Detection of the scattered light beams is performed by condensing the scattered light beams, adjusting polarization directions of the condensed scattered light beams, mutually separating the light beams depending on the polarization direction, and detecting the light beams by a plurality of detectors. Extraction of the defect is performed by processing output signals from the detectors by multiplying each detection signal by a gain, discriminating between a noise and the defect, and detecting the defect.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: March 12, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Toshifumi Honda, Yuta Urano, Shunichi Matsumoto, Taketo Ueno, Yuko Otani
  • Patent number: 10222348
    Abstract: The biological polymer analyzing equipment with nanopore includes a chamber part having a chamber having a sample introduction section and a sample outflow section separated by a substrate; a first electrode provided in the sample introduction section and a second electrode provided in the sample outflow section; a thin membrane formed on the substrate; a nanopore provided in the thin membrane of the substrate and communicating between the sample introduction section and the sample outflow section; a third electrode provided near the nanopore of the substrate; and a voltage applying member to electrodes, wherein the voltage applying member includes a member for applying voltages between the first electrode and the third electrode, between the first electrode and the second electrode, respectively, and between the third electrode and the second electrode, and relates to a method for analyzing a biological polymer using the biological polymer analyzing equipment with nanopore.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: March 5, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventor: Takeshi Ohura
  • Patent number: 10223784
    Abstract: A pattern evaluation device of the present invention includes a model estimation unit that estimates a model caused by a manufacturing method on the basis of an inspection image, a deformation amount estimation unit that estimates a deformation amount of the inspection image by using the estimated model, a reference data deformation unit that deforms reference data by using the estimated deformation amount, and an evaluation unit that performs an evaluation process by comparing the reference data which is deformed by the reference data deformation unit with the inspection image.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: March 5, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hiroyuki Ushiba, Tsuyoshi Minakawa
  • Patent number: 10217604
    Abstract: A charged particle beam device includes a charged particle source that generates a charged particle beam, a focus adjustment unit that adjusts a focal position of the charged particle beam, a deflection unit for scanning the charged particle beam on the sample, a detection unit that detects charged particles generated when the sample is irradiated with the charged particle beam, a detected charged particle selection unit that selects charged particles to be detected by the detection unit, and a control processing unit that makes focus adjustment of the focus adjustment unit and reference adjustment of the detected charged particle selection unit by using information from the detection unit acquired from one scan.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: February 26, 2019
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Makoto Sakakibara, Hajime Kawano, Makoto Suzuki, Yuji Kasai, Daisuke Bizen, Yoshinori Momonoi
  • Patent number: 10217611
    Abstract: A plasma processing apparatus or a plasma processing method that processes a wafer to be processed, which is placed on a surface of a sample stage arranged in a processing chamber inside a vacuum container, using a plasma formed in the processing chamber, the apparatus or method including processing the wafer by adjusting a first high-frequency power to be supplied to a first electrode arranged inside the sample stage and a second high-frequency power to be supplied, via a resonant circuit, to a second electrode which is arranged in an inner side of a ring-shaped member made of a dielectric arranged on an outer peripheral side of a surface of the sample stage on which the wafer is placed, during the processing.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: February 26, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Tooru Aramaki, Kenetsu Yokogawa, Masaru Izawa
  • Patent number: 10217602
    Abstract: High expectations are placed on aberration correctors to increase the resolving power of charged particle devices. Meanwhile, a far more complicated configuration and higher mechanical precision assembly in comparison to prior art aberration correctors are necessary in charged particle beam optical devices that use low-energy electron beams. A complex electromagnetic quadrupole part employed in the aberration corrector preferably has the forward extremities of the poles provided in a vacuum near an electron beam path and excitation coils disposed outside the vacuum, and this necessitates a structure that can achieve both electrical insulation and vacuum sealing for each of these poles. Such structural complexity generally conflicts with improving mechanical assembly precision.
    Type: Grant
    Filed: July 3, 2015
    Date of Patent: February 26, 2019
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventor: Takaho Yoshida
  • Patent number: 10217613
    Abstract: A plasma processor, including a first gas supplier to supply first gas to the inside of a vacuum vessel, a stage on which a wafer is placed, an electromagnetic wave supplier to supply electromagnetic waves for generating first plasma, a susceptor provided to an outer peripheral portion of the stage, a second high frequency power source connected to the susceptor, and a second gas supplier to supply second gas to the inside of the susceptor. The inside of the susceptor is provided with a high frequency electrode connected to the second high frequency power source and a first earth electrode disposed opposite to the high frequency electrode. The second high frequency power source supplies high frequency power while the second gas supplier supplies the second gas, thereby generating second plasma inside the susceptor.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: February 26, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Tetsuo Kawanabe, Takumi Tandou, Tsutomu Tetsuka, Naoki Yasui
  • Publication number: 20190057846
    Abstract: There is disclosed a plasma processing apparatus for processing a wafer put on a sample stage disposed in a processing chamber within a vacuum vessel by the use of a plasma generated in the processing chamber after mounting the wafer on the sample stage. The apparatus has heaters in areas of the interior of the sample stage which are divided radially and circumferentially. At least those of the heaters which are arranged in the areas located in the radially outer position include circumferentially arranged heater portions that are connected in series. The amounts of heat generated by these circumferentially arranged heater portions are adjusted.
    Type: Application
    Filed: October 24, 2018
    Publication date: February 21, 2019
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Hironori Kusumoto, Yutaka Ohmoto, Kazunori Nakamoto, Koji Nagai
  • Patent number: 10211022
    Abstract: A gas field ionization source in which an ion beam current is stable for a long time is achieved in an ion beam apparatus equipped with a field ionization source that supplies gas to a chamber, ionizes the gas, and applies the ion beam to a sample. The ion beam apparatus includes an emitter electrode having a needle-like extremity; a chamber inside which the emitter electrode is installed; a gas supply unit that supplies the gas to the chamber; a cooling unit that is connected to the chamber and cools the emitter electrode; a discharge type exhaust unit that exhausts gas inside the chamber; and a trap type exhaust unit that exhausts gas inside the chamber. The exhaust conductance of the discharge type exhaust unit is larger than the total exhaust conductance of the trap type exhaust unit.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: February 19, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Shinichi Matsubara, Hiroyasu Shichi, Yoshimi Kawanami, Tomihiro Hashizume
  • Patent number: 10208277
    Abstract: According to the present invention, a problem of closed systems, namely minimizing the number of electromagnetic valves required to control a plurality of flow paths, can be addressed, and thus a low-cost cell culture device can be achieved. In this flow-path control method for X number of flow paths satisfying X?2N, the X number of flow paths are selected by using N number of valves to simultaneously and selectively control the opening and closing of the plurality of flow paths.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: February 19, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Akihiro Shimase, Kazumichi Imai, Eiichiro Takada, Sadamitsu Aso
  • Patent number: 10204760
    Abstract: There is provided a charged particle beam apparatus which can quickly perform high accuracy positioning and defect detection. A process of acquiring a low magnification defect image for one defect candidate and a process of specifying a region appearing as a defect are performed by repeatedly performing a defect detection process maximum n-times and by using an integrated frame image of the low magnification defect image having at least one frame or the maximum n-number of frames for one defect candidate. As the low magnification defect image used in order to generate a difference image with a low magnification reference image for one defect candidate, the integrated frame image is used which is obtained by adding the frames of the low magnification defect image having at least one frame or the maximum n-number of frames.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: February 12, 2019
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventor: Tatsuichi Katou
  • Patent number: 10203851
    Abstract: Provided is a GUI including: an unadded pane region that hierarchically displays folders which are sets of images having no class information added thereto; an image pane region that displays the images displayed in the unadded pane region, the displayed images having no classification added thereto; and a class pane region that displays images having classification added thereto, wherein by externally inputting class information for one image having the class information added thereto, the input class information is displayed.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: February 12, 2019
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Yohei Minekawa, Yuji Takagi, Minoru Harada, Takehiro Hirai, Ryo Nakagaki