Patents Assigned to Institute of Microelectronics
-
Patent number: 8748250Abstract: The present invention provides a method for integrating the dual metal gates and the dual gate dielectrics into a CMOS device, comprising: growing an ultra-thin interfacial oxide layer or oxynitride layer by rapid thermal oxidation; forming a high-k gate dielectric layer on the ultra-thin interfacial oxide layer by physical vapor deposition; performing a rapid thermal annealing after the deposition of the high-k; depositing a metal nitride gate by physical vapor deposition; doping the metal nitride gate by ion implantation with P-type dopants for a PMOS device, and with N-type dopants for an NMOS device, with a photoresist layer as a mask; depositing a polysilicon layer and a hard mask by a low pressure CVD process, and then performing photolithography process and etching the hard mask; removing the photoresist, and then etching the polysilicon layer/the metal gate/the high-k dielectric layer sequentially to provide a metal gate stack; forming a first spacer, and performing ion implantation with a low energyType: GrantFiled: February 21, 2011Date of Patent: June 10, 2014Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Qiuxia Xu, Gaobo Xu
-
Patent number: 8748272Abstract: The present invention relates to a method of introducing strain into a channel and a device manufactured by using the method, the method comprising: providing a semiconductor substrate; forming a channel in the semiconductor substrate; forming a first gate dielectric layer on the channel; forming a polysilicon gate layer on the first gate dielectric layer; doping or implanting a first element into the polysilicon gate layer; removing a part of the first gate dielectric layer and polysilicon gate layer to thereby form a first gate structure; forming a source/drain extension region in the channel; forming spacers on both sides of the first gate structure; forming a source/drain in the channel; and performing annealing such that lattice change occurs in the polysilicon that is doped or implanted with the first element in the high-temperature crystallization process, thereby producing a first strain in the polysilicon gate layer, and introducing the first strain through the gate dielectric layer to the channel.Type: GrantFiled: April 20, 2011Date of Patent: June 10, 2014Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Huaxiang Yin, Qiuxia Xu, Dapeng Cheng
-
Patent number: 8748983Abstract: An embedded source/drain MOS transistor and a formation method thereof are provided. The embedded source/drain MOS transistor comprises: a semiconductor substrate; a gate structure on the semiconductor substrate; and a source/drain stack embedded in the semiconductor substrate at both sides of the gate structure with an upper surface of the source/drain stack being exposed, wherein the source/drain stack comprises a dielectric layer and a semiconductor layer above the dielectric layer. The present invention can cut off the path for the leakage current from the source region and the drain region to the semiconductor substrate, thereby reducing the leakage current from the source region and the drain region to the semiconductor substrate.Type: GrantFiled: August 12, 2011Date of Patent: June 10, 2014Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Huicai Zhong, Chao Zhao, Qingqing Liang
-
Publication number: 20140154853Abstract: The present disclosure discloses a method for manufacturing an N-type MOSFET, comprising: forming a part of the MOSFET on a semiconductor substrate, the part of the MOSFET comprising source/drain regions in the semiconductor substrate, a replacement gate stack between the source/drain regions above the semiconductor substrate, and a gate spacer surrounding the replacement gate stack; removing the replacement gate stack of the MOSFET to form a gate opening exposing a surface of the semiconductor substrate; forming an interface oxide layer on the exposed surface of the semiconductor; forming a high-K gate dielectric layer on the interface oxide layer in the gate opening; forming a first metal gate layer on the high-K gate dielectric layer; implanting dopant ions into the first metal gate layer; and performing annealing to cause the dopant ions to diffuse and accumulate at an upper interface between the high-K gate dielectric layer and the first metal gate layer and a lower interface between the high-K gate dielType: ApplicationFiled: December 7, 2012Publication date: June 5, 2014Applicant: Institute of Microelectronics, Chinese Academy of SciencesInventors: Qiuxia Xu, Huilong Zhu, Huajie Zhou, Gaobo Xu
-
Method for manufacturing FinFET with improved short channel effect and reduced parasitic capacitance
Patent number: 8741703Abstract: The present application discloses a method for manufacturing a semiconductor device. The method may comprise providing a fin in a semiconductor layer of a SOI substrate, and providing a stack of gate dielectric and gate conductor on only a first side of the fin. The gate conductor may extend laterally away from the first side of the fin in a gate extending direction. The method may comprise doping the fin at its other two opposing sides so as to provide a source region and a drain region. Each of the source and drain regions may have a portion extending laterally away from a second side, opposite to the first side, of the fin in a source/drain extending direction. The gate extending direction and the source/drain extending direction can be parallel to the main surface of the SOI substrate, while being opposite to each other. The method may comprise providing a channel region at a central portion of the fin.Type: GrantFiled: September 17, 2013Date of Patent: June 3, 2014Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventor: Huilong Zhu -
Patent number: 8735245Abstract: The present disclosure relates to the microelectronics field, and particularly, to a metal oxide resistive switching memory and a method for manufacturing the same. The method may comprise: forming a W-plug lower electrode above a MOS device; sequentially forming a cap layer, a first dielectric layer, and an etching block layer on the W-plug lower electrode; etching the etching block layer, the first dielectric layer, and the cap layer to form a groove for a first level of metal wiring; sequentially forming a metal oxide layer, an upper electrode layer, and a composite layer of a diffusion block layer/a seed copper layer/a plated copper layer in the groove for the first level of metal wiring; patterning the upper electrode layer and the composite layer by CMP, to form a memory cell and the first level of metal wiring in the groove in the first dielectric layer; and performing subsequent processes to complete the metal oxide resistive switching memory.Type: GrantFiled: June 30, 2011Date of Patent: May 27, 2014Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Hangbing Lv, Ming Liu, Shibing Long, Qi Liu, Yanhua Wang, Jiebin Niu
-
Patent number: 8736812Abstract: The present disclosure relates to the field of micro-nano fabrication, and provides a projection-type photolithography system using a composite photon sieve. The system comprises: a lighting system, a mask plate, a composite photon sieve and a substrate, which are arranged in order. The lighting system is adapted to generate incident light and irradiate the mask plate with the incident light. The mask plate is adapted to provide an object to be imaged by the composite photon sieve, and the incident light reaches the composite photon sieve after passing through the mask plate. The composite photon sieve is adapted to perform imaging, by which a pattern on the mask plate is imaged on the substrate. The substrate is adapted to receive an image of the pattern on the mask plate imaged by the composite photon sieve.Type: GrantFiled: August 16, 2011Date of Patent: May 27, 2014Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Changqing Xie, Nan Gao, Yilei Hua, Xiaoli Zhu, Hailiang Li, Lina Shi, Dongmei Li, Ming Liu
-
Patent number: 8729611Abstract: The present disclosure provides a semiconductor device and a method for manufacturing the same. The semiconductor device comprises: a semiconductor layer comprising a plurality of semiconductor sub-layers; and a plurality of fins formed in the semiconductor layer and adjoining the semiconductor layer, wherein at least two of the plurality of fins comprise different numbers of the semiconductor sub-layers and have different heights. According to the present disclosure, a plurality of semiconductor devices with different dimensions and different driving abilities can be integrated on a single wafer.Type: GrantFiled: November 18, 2011Date of Patent: May 20, 2014Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Huilong Zhu, Haizhou Yin, Zhijiong Luo
-
Patent number: 8729661Abstract: A semiconductor structure and a method for manufacturing the same are disclosed. The method comprises: disposing a first dielectric material layer on a first semiconductor layer and defining openings in the first dielectric material layer; epitaxially growing a second semiconductor layer on the first semiconductor layer via the openings defined in the first dielectric material layer, wherein the second semiconductor layer and the first semiconductor layer comprise different materials from each other; and forming plugs of a second dielectric material in the second semiconductor layer at positions where the openings are defined in the first dielectric material layer and also at middle positions between adjacent openings. According to embodiments of the disclosure, defects occurring during the heteroepitaxial growth can be effectively suppressed.Type: GrantFiled: April 25, 2011Date of Patent: May 20, 2014Assignee: Institute of Microelectronics, Chince Academy of SciencesInventors: Zhijiong Luo, Haizhou Yin, Huilong Zhu
-
Patent number: 8729638Abstract: A method for making FinFETs and semiconductor structures formed therefrom is disclosed, comprising: providing a SiGe layer on a Si semiconductor substrate and a Si layer on the SiGe layer, wherein the lattice constant of the SiGe layer matches that of the substrate; patterning the Si layer and the SiGe layer to form a Fin structure; forming a gate stack on top and both sides of the Fin structure and a spacer surrounding the gate stack; removing a portion of the Si layer which is outside the spacer with the spacer as a mask, while keeping a portion of the Si layer which is inside the spacer; removing a portion of the SiGe layer which is kept after the patterning, to form a void; forming an insulator in the void; and epitaxially growing stressed source and drain regions on both sides of the Fin structure and the insulator.Type: GrantFiled: November 30, 2011Date of Patent: May 20, 2014Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Huilong Zhu, Zhijiong Luo, Haizhou Yin
-
Patent number: 8728948Abstract: A method of manufacturing a semiconductor device is disclosed. The method may comprise: forming a gate stack on a substrate; depositing a first dielectric layer and a second dielectric layer sequentially on the substrate and the gate stack; and etching the second dielectric layer and the first dielectric layer sequentially with an etching gas containing helium to form a second spacer and a first spacer, respectively. According to the method disclosed herein, a dual-layer complex spacer configuration is achieved, and two etching operations where the etching gas comprises the helium gas are performed. As a result, it is possible to reduce damages to the substrate and also to reduce the process complexity. Further, it is possible to optimize a threshold voltage, effectively reduce an EOT, and enhance a gate control capability and a driving current.Type: GrantFiled: September 5, 2012Date of Patent: May 20, 2014Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventor: Lingkuan Meng
-
Patent number: 8728881Abstract: Semiconductor devices and methods for manufacturing the semiconductor devices are disclosed. A semiconductor device includes a substrate, a fin formed above the substrate with a semiconductor layer formed between the substrate and the fin, and a gate stack crossing over the fin. The fin and the semiconductor layer may include different materials and have etching selectivity with respect to each other. A patterning of the fin can be stopped reliably on the semiconductor layer. Therefore, it is possible to better control the height of the fin and thus the channel width of the final device.Type: GrantFiled: November 25, 2011Date of Patent: May 20, 2014Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Huilong Zhu, Haizhou Yin, Zhijiong Luo
-
Publication number: 20140131806Abstract: A semiconductor device and a method of manufacturing the same is disclosed. In one aspect, the method comprises forming a first MOSFET having a first gate length in a semiconductor substrate, and forming a second MOSFET having a second gate length in the semiconductor substrate. Furthermore, the second gate length is less than the first gate length, and wherein the second MOSFET has a gate stack in the form of a spacer having a gate conductor and a gate dielectric isolating the gate conductor from the semiconductor substrate.Type: ApplicationFiled: December 30, 2013Publication date: May 15, 2014Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCESInventors: Huilong Zhu, Qingqing Liang
-
Patent number: 8722524Abstract: It is provided a method for forming a semiconductor device comprising: forming a material layer which exposes dummy gates and sidewall spacers and fills spaces between two adjacent gate stacks, and the material of the material layer is the same as the material of the dummy gate; removing the dummy gates and the material layer to form recesses; filling the recesses with a conductive material, and planarizing the conductive material to expose the sidewall spacers; breaking the conductive material outside the sidewall spacers to form at least two conductors, each of the conductors being only in contact with the active region at one side outside one of the sidewall spacers, so as to form gate stack structures and first contacts. Besides, a semiconductor device is provided. The method and the semiconductor device are favorable for extending process windows in forming contacts.Type: GrantFiled: February 27, 2011Date of Patent: May 13, 2014Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Zhijiong Luo, Haizhou Yin, Huilong Zhu
-
Publication number: 20140124859Abstract: The present invention provides a method for manufacturing a semiconductor structure, which comprises: providing an SOI substrate, forming a gate structure on the SOI substrate; etching an SOI layer of the SOI substrate and a BOX layer of the SOI substrate on both sides of the gate structure to form trenches, the trenches exposing the BOX layer and extending partly into the BOX layer; forming sidewall spacers on sidewalls of the trenches; forming inside the trenches a metal layer covering the sidewall spacers, wherein the metal layer is in contact with the SOI layer which is under the gate structure. Accordingly, the present invention further provides a semiconductor structure formed according to aforesaid method.Type: ApplicationFiled: August 25, 2011Publication date: May 8, 2014Applicants: BEIJING NMC CO., LTD., INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCESInventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
-
Patent number: 8716095Abstract: A manufacturing method of a gate stack with sacrificial oxygen-scavenging metal spacers includes: forming a gate stack structure consisting of an interfacial oxide layer, a high-K dielectric layer and a metal gate electrode, on a semiconductor substrate; conformally depositing a metal layer covering the semiconductor substrate and the gate stack structure; and selectively etching the metal layer to remove the portions of the metal layer covering the top surface of the gate stack structure and the semiconductor substrate, so as to only keep the sacrificial oxygen-scavenging metal spacers surrounding the gate stack structure in the outer periphery of the gate stack structure. A semiconductor device manufactured by this process.Type: GrantFiled: September 19, 2010Date of Patent: May 6, 2014Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Huicai Zhong, Zhijiong Luo, Qingqing Liang
-
Patent number: 8716799Abstract: The present application discloses a MOSFET and a method for manufacturing the same, wherein the MOSFET comprises: an SOI wafer, which comprises a semiconductor substrate, a buried insulator layer, and a semiconductor layer, the buried insulator layer being disposed on the semiconductor substrate, and the semiconductor layer being disposed on the buried insulator layer; a gate stack, which is disposed on the semiconductor layer; a source region and a drain region, which are disposed in the semiconductor layer and on opposite sides of the gate stack; and a channel region, which are disposed in the semiconductor layer and sandwiched by the source region and the drain region, wherein the MOSFET further comprises a back gate disposed in the semiconductor substrate, and wherein the back gate comprises first, second and third compensation doping regions, the first compensation doping region is disposed under the source region and the drain region; the second compensation doping region extends in a direction away froType: GrantFiled: August 1, 2011Date of Patent: May 6, 2014Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Huilong Zhu, Miao Xu, Qingqing Liang
-
Patent number: 8716800Abstract: Semiconductor structure and methods for manufacturing the same are disclosed.Type: GrantFiled: March 4, 2011Date of Patent: May 6, 2014Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Huilong Zhu, Haizhou Yin, Zhijong Luo, Qingqing Liang
-
Patent number: 8716090Abstract: The present invention provides a manufacturing method for a semiconductor device having epitaxial source/drain regions, in which a diffusion barrier layer of the source/drain regions made of epitaxial silicon-carbon or germanium silicon-carbon are added on the basis of epitaxially growing germanium-silicon of the source/drain regions in the prior art process, and the introduction of the diffusion barrier layer of the source/drain regions prevents diffusion of the dopant in the source/drain regions, thus mitigating the SCE and DIBL effect.Type: GrantFiled: June 12, 2012Date of Patent: May 6, 2014Assignee: The Institute of Microelectronics Chinese Academy of ScienceInventors: Changliang Qin, Huaxiang Yin
-
Patent number: 8710556Abstract: The present application discloses a semiconductor device comprising a fin of semiconductive material formed from a semiconductor layer over a semiconductor substrate and having two opposing sides perpendicular to the main surface of the semiconductor substrate; a source region and a drain region provided in the semiconductor substrate adjacent to two ends of the fin and being bridged by the fin; a channel region provided at the central portion of the fin; and a stack of gate dielectric and gate conductor provided at one side of the fin, where the gate conductor is isolated from the channel region by the gate dielectric, and wherein the stack of gate dielectric and gate conductor extends away from the one side of the fin in a direction parallel to the main surface of the semiconductor substrate, and insulated from the semiconductor substrate by an insulating layer.Type: GrantFiled: June 25, 2010Date of Patent: April 29, 2014Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Huilong Zhu, Haizhou Yin, Zhijiong Luo, Qiagqing Liang