Patents Assigned to INSTITUTE
  • Patent number: 11220743
    Abstract: A composite substrate including a substrate and an aluminum nitride layer is provided. The aluminum nitride layer is disposed on a top surface of the substrate. Silicon is doped in the aluminum nitride layer to regulate residual stress, a film thickness of the aluminum nitride layer is less than 3.5 ?m, a defect density of the aluminum nitride layer is less than or equal to 5×109/cm2, and a root mean square roughness of the top surface, facing away from the substrate, of the aluminum nitride layer is less than 3 nm. A manufacturing method of a composite substrate is also provided.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: January 11, 2022
    Assignee: Industrial Technology Research Institute
    Inventor: Chia-Yen Huang
  • Patent number: 11222985
    Abstract: An n-type semiconductor layer has a single-crystal structure and is made of a wide-gap semiconducting material. A p-type semiconductor layer is provided on the n-type semiconductor layer and made of a material different from the aforementioned wide-gap semiconducting material, and has either a microcrystalline structure or an amorphous structure. An electrode is provided on at least one of the n-type semiconductor layer and the p-type semiconductor layer.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: January 11, 2022
    Assignees: Mitsubishi Electric Corporation, Tokyo Institute of Technology
    Inventors: Tatsuro Watahiki, Yohei Yuda, Akihiko Furukawa, Shinsuke Miyajima, Yuki Takiguchi
  • Patent number: 11219884
    Abstract: A method for producing a cluster-supporting catalyst, the cluster-supporting catalyst including porous carrier particles that has acid sites, and catalyst metal clusters supported within the pores of the porous carrier particles, includes the following steps: providing a dispersion liquid containing a dispersion medium and the porous carrier particles dispersed in the dispersion medium; and in the dispersion liquid, forming catalyst metal clusters having a positive charge, and supporting the catalyst metal clusters on the acid sites within the pores of the porous carrier particles through an electrostatic interaction.
    Type: Grant
    Filed: December 26, 2016
    Date of Patent: January 11, 2022
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, GENESIS RESEARCH INSTITUTE, INC.
    Inventors: Yoshihiro Takeda, Namiki Toyama, Kazuhiro Egashira, Toshiaki Tanaka, Seitoku Ito
  • Patent number: 11219568
    Abstract: The present disclosure provides a standing assistance apparatus including a support part configured to support a load, a saddle part configured to accommodate a patient to allow the patient to position from sitting condition to standing condition, and a guide part coupled between the support part and the saddle part and having an adjustable length to guide the patient to stand, wherein the guide part is disposed in diagonal direction with respect to the support part to guide the patient to stand in the diagonal direction.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: January 11, 2022
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Junku Yuh, Sung Chul Kang, Woosub Lee, Seungwon Kim, Jiyeon Song, Gang Tae Bae
  • Patent number: 11220261
    Abstract: The present invention relates to a method for use in a driver assistance system of an ego-vehicle. The method supports driving of the ego-vehicle and comprises the steps of retrieving a priority relationship between the ego-vehicle and at least one traffic participant involved in a traffic situation; selecting a prediction model for the at least one traffic participant depending on the priority relationship; predicting at last one hypothetical future trajectory for the ego-vehicle and, based on the selected prediction model, at last one hypothetical future trajectory for the at least one traffic participant; and calculating a behavior relevant score for ego-vehicle based on the calculated hypothetical future trajectories.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: January 11, 2022
    Assignee: HONDA RESEARCH INSTITUTE EUROPE GMBH
    Inventors: Julian Eggert, Tim Puphal, Malte Probst
  • Patent number: 11223139
    Abstract: An expandable antenna includes: a plurality of ribs arranged with a regulated angular pitch at an outer circumferential portion of a hub; and a metal mesh installed between the plurality of adjacent ribs, wherein each of the plurality of ribs is formed in a horizontally elongated thin flat plate shape with elasticity, and a segment to which the metal mesh is attached is formed in a parabolic shape. A flat plane of each of the plurality of ribs is arranged so as to be substantially parallel to a central axis of the hub. The object of the present invention is to provide the expandable antenna which can be easily expanded in outer space with a simple structure and can realize a desired shape after expansion.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: January 11, 2022
    Assignee: INSTITUTE FOR Q-SHU PIONEERS OF SPACE, INC.
    Inventors: Shunsuke Onishi, Tetsuo Yasaka, Kazuo Kuno, Yohei Koga
  • Patent number: 11221476
    Abstract: A microscope directs light through an excitation objective to generate a lattice light sheet (LLS) within a sample. A detection objective collects signal light from the sample in response to the LLS and images the collected light onto a detector. Second and third light beams are imaged onto focal planes of the excitation objective and detection objective, respectively. One or more wavefront detectors determine wavefronts of light emitted from the sample and through the excitation objective in response to the imaged second light beam and emitted from the sample through the detection objective in response to the imaged third light beam. A wavefront of the first light beam is modified to reduce a sample-induced aberration of the LLS within the sample, and a wavefront of the signal light emitted from the sample is modified to reduce a sample-induced aberration of the signal light at the detector.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: January 11, 2022
    Assignee: Howard Hughes Medical Institute
    Inventors: Robert Eric Betzig, Tsung-Li Liu, Daniel E. Milkie, Kai Wang, Wesley Legant
  • Patent number: 11220899
    Abstract: A gyro measurement while drilling system, which includes a strapdown inertial unit, a filtering and level conversion module, a data acquisition and data communication module, a driving mechanism, a driving control module and a navigation computer. A gyro measurement while drilling method, which is used in the measurement while drilling system and includes one or a combination of the following methods: a full parameter variable compensation method, an initial alignment algorithm and a continuous measurement while drilling method. The system and method of the present disclosure can meet the most demanding application scenarios in the field of petroleum drilling measurement, i.e.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: January 11, 2022
    Assignee: INSTITUTE OF GEOLOGY AND GEOPHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Xu Xue, Yang Dong, Xiaoxiao Zhang, Changchun Yang
  • Patent number: 11223206
    Abstract: Embodiments of the disclosure relate to methods and systems for modeling, controlling and computer-platform implementation of a Synthetic Reserve Provisioning System (SRPS) needed to aggregate and integrate small devices closer to consumers, referred to as Distributed Energy Resources (DERs). This know-how is based on data-driven physics-based modeling and it supports the dispatch and scheduling of DERs so that they can participate in system level provision of electricity service. An SRPS generally comprises multiple levels of consumer aggregators (Synthetic Reserve Provisioning (SRP) modules) which interact by exchanging well-defined information about provable consumer characteristics and their own loading and pricing conditions. Three different SRPS designs are described. They differ with respect to implementation requirements for communications, control, technical and economic risks assumed by different SRP modules.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: January 11, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Marija D. Ilic, Rupamathi Jaddivada
  • Patent number: 11223333
    Abstract: Provided is an amplification circuit for amplifying an input signal. The amplification circuit includes an input stage including an input matching circuit that receives the input signal and an input attenuation circuit that attenuates a gain for the input signal outside an operating frequency band of the amplification circuit, a transistor that amplifies the input signal provided from the input stage, and an output stage including an output matching circuit that receives a signal amplified by the transistor and an output attenuation circuit that attenuates the gain for the input signal outside the operating frequency band of the amplification circuit, and the input attenuation circuit includes a first resistor and a second resistor that are connected to a ground voltage, a first passive element connected between the input matching circuit and the second resistor, and a second passive element connected between the first passive element and the first resistor.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: January 11, 2022
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Woojin Chang, Seong-Il Kim, Sang-Heung Lee, Jongmin Lee
  • Patent number: 11220545
    Abstract: The present invention relates to methods for upregulating immune responses using combinations of anti-RGMb and anti-PD-1 agents.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: January 11, 2022
    Assignee: Dana-Farber Cancer Institute, Inc.
    Inventors: Gordon J. Freeman, Yanping Xiao
  • Patent number: 11221268
    Abstract: A method determines a total velocity average cross-section parameter ?tot? in a relationship of the form ?loss(U)=nb?tot?·ƒ(U, Ud), where: ?loss(U) is a rate of exponential loss of sensor atoms from a cold atom sensor trap of trap depth potential energy U in a vacuum environment due to collisions with residual particles in the vacuum environment; nb is a number density of residual particles in the vacuum environment; Ud is a parameter given by U d = 2 ? k B ? T / m bg ? 4 ? ? ? ? ? 2 m t ? ? ? tot ? v ? which relates the masses of the sensor atoms mt and residual particles mbg to the total velocity average cross-section parameter ?tot?; and ƒ(U, Ud) is a function of the trap depth potential energy U and the parameter Ud which models a naturally occurring dependence of the loss rate ?loss(U) on the trap depth potential energy U and the parameter Ud, where ƒ(U=0, Ud) is unity for all Ud.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: January 11, 2022
    Assignees: The University of British Coumbia, British Columbia Institute of Technology
    Inventors: Kirk W. Madison, James Lawrence Booth, Pinrui Shen, Roman V. Krems
  • Patent number: 11223066
    Abstract: A method of manufacturing a solid-state electrolyte including: providing a solvent; dissolving a precursor compound including lithium, a precursor compound including lanthanum, and a precursor compound including zirconium in the solvent to provide a precursor composition, wherein a content of lithium in the precursor composition is greater than a stoichiometric amount; spraying the precursor composition onto a heated substrate to form a film; and heat-treating the film at 300° C. to 800° C. to manufacture the solid state electrolyte, wherein the solid-state electrolyte includes Li(7-x)Alx/3La3Zr2O12 wherein 0?x?1, and wherein the solid state electrolyte is in a form a film having a thickness of 5 nanometers to 1000 micrometers.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: January 11, 2022
    Assignees: SAMSUNG ELECTRONICS CO., LTD., MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Yuntong Zhu, Zachary Hood, Jennifer Rupp, Lincoln J. Miara
  • Patent number: 11219858
    Abstract: Methods, apparatuses, and systems related to electrochemical capture of Lewis acid gases from fluid mixtures are generally described. Certain embodiments are related to electrochemical methods involving selectively removing a first Lewis acid gas from a fluid mixture containing multiple types of Lewis acid gases (e.g., a first Lewis acid gas and a second Lewis acid gas). Certain embodiments are related to electrochemical systems comprising certain types of electroactive species having certain redox states in which the species is capable of binding a first Lewis acid gas but for which binding with a second Lewis acid gas is thermodynamically and/or kinetically unfavorable. The methods, apparatuses, and systems described herein may be useful in carbon capture and pollution mitigation applications.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: January 11, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Sahag Voskian, Trevor Alan Hatton, Cameron G. Halliday
  • Patent number: 11221329
    Abstract: Provided are methods for treating and/or reducing the symptoms of a neurological or neurodevelopmental disease or disorder characterized by ectopic expression of certain ion channels, in particular, the Nav1.8 subtype SCN10a sodium channel, or the KCNQ1 potassium channel, in neuronal cells of the central nervous system (CNS) of a subject by administering to a subject in need an antagonist of one or both of these ion channels, and in particular, an antagonist of SCN10a, to block, reduce, or suppress the aberrant CNS neuronal ion channel expression and/or activity and normalize behavioral and cognitive defects associated with the neurological and neurodevelopmental disease or disorder, so as to treat and/or reduce the symptoms of the neurological or neurodevelopmental disease or disorder. Examples of such diseases or disorders that may be treated by the described methods include, for example, Pitt-Hopkins Syndrome (PTHS), autism, autism spectrum disorder, schizophrenia, 18q syndrome and the like.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: January 11, 2022
    Assignee: Lieber Institute, Inc.
    Inventor: Brady Maher
  • Patent number: 11220548
    Abstract: The present disclosure provides a method for treating a subject afflicted with Waldenström's macroglobulinemia (WM) comprising administering to the subject a therapeutically effective amount of an antibody or an antigen-binding portion thereof that specifically binds to a CXCR4 receptor expressed on the surface of a WM cell. The disclosure also provides a therapeutic regimen for treating a patient afflicted with C1013G/CXCR4-associated WM.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: January 11, 2022
    Assignees: BRISTOL-MYERS SQUIBB COMPANY, DANA-FARBER CANCER INSTITUTE, Inc.
    Inventors: Irene M. Ghobrial, Aldo M. Roccaro, Josephine M. Cardarelli, Antonio Sacco
  • Patent number: 11224036
    Abstract: The method for transmitting control information in a mobile communication system includes: determining a control channel resource for transmitting control information by means of the data channel region; and transmitting the control information using the determined control channel resource. A capacity for control information, which increases for multiple user multiple-input multiple-out (MIMOs) in a heterogeneous network environment, for heterogeneous network interference control using carrier aggregation, for frequent use of a multicast-broadcast single frequency network (MBSFN) subframe, and for a CoMP transmission control, may be satisfied. Further, an adaptive resource allocation based on a requested capacity for control information may be enabled, and the efficient utilization of resources may also be enabled.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: January 11, 2022
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Bang-Won Seo, Young-Jo Ko, Tae-Gyun Noh, Jae-Young Ahn
  • Patent number: 11220532
    Abstract: The invention provides structurally-constrained peptides by hydrocarbon stapling of a BCL9 HD2 helix for use as a therapeutic agent. The invention further provides methods and kits for use of the structurally-constrained peptide of the instant invention. The invention is based, at least in part, on the results provided herein demonstrating that hydrocarbon stapled helical peptides display excellent proteolytic, acid, and thermal stability, restore the native helical structure of the peptide, possess superior pharmacokinetic properties compared to the corresponding unmodified peptides, and are highly effective in binding to ?-catenin in vitro, in cellulo, and in vivo, disrupting the BCL9/?-catenin interaction, and thereby interfering with deregulated Wnt/?-catenin signaling for therapeutic benefit in a variety of human diseases including human cancer.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: January 11, 2022
    Assignee: Dana-Farber Cancer Institute, Inc.
    Inventors: Loren D. Walensky, Ruben Carrasco, Gregory H. Bird
  • Patent number: 11219968
    Abstract: A laser processing head (100) comprises a first-level nozzle (110) and a second-level nozzle (120) that communicate with each other, wherein the second-level nozzle (120) is arranged downstream of the first-level nozzle (110); an inner diameter of the second-level nozzle (120) gradually decreases in a laser transmission direction, and minimum inner diameter of the first-level nozzle (110) is larger than the inner diameter of a tail end of the second-level nozzle (120). The laser processing head (100) solves the contradiction between high energy density laser and the system reliability through gradual coupling. Also provided are a laser processing system and a laser processing method.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: January 11, 2022
    Assignee: Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences
    Inventors: Wenwu Zhang, Tianrun Zhang, Chunhai Guo, Yang Yang
  • Patent number: 11223785
    Abstract: A compressive sensing image sensor includes: a pixel array; and a readout circuit configured to receive pixel data on a shot image in an analogue form, and to process the pixel data, wherein the pixel array includes a plurality of blocks each having a plurality of pixels and arranged in an array form, wherein the circuit includes: a compressive sensing multiplexer to which a plurality of pixel data outputted from a corresponding block from among the plurality of blocks are inputted; an LFSR configured to arbitrarily select at least one pixel data from the plurality of pixel data inputted to the compressive sensing multiplexer; and a delta-sigma ADC configured to receive the at least one pixel data selected by the LFSR, to delta-sigma modulate the received at least one pixel data, and to generate compressive sensing data for restoring an image of the corresponding block from among the shot images.
    Type: Grant
    Filed: September 3, 2018
    Date of Patent: January 11, 2022
    Assignee: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Byung Geun Lee, Jin Ho Kim, Hyun Keun Lee, Woo Tae Kim