Patents Assigned to Intersil
-
Publication number: 20110043281Abstract: A circuit in accordance with an embodiment of the present invention includes an instrumentation amplifier, a dynamically adjustable low pass filter, at least one monitor and a controller. The instrumentation amplifier includes a pair of buffered operational amplifiers that accept a pair of input signals, and a differential operational amplifier that outputs an output signal indicative of a difference between the pair of input signals. The dynamically adjustable low pass filter is configured to provide band limiting of the output signal at frequencies greater than a cutoff frequency. The monitor, or monitors, is/are configured to monitor a signal upstream of the instrumentation amplifier and/or a signal downstream of the instrumentation amplifier and output a monitor signal.Type: ApplicationFiled: March 8, 2010Publication date: February 24, 2011Applicant: INTERSIL AMERICAS INC.Inventors: Philip V. Golden, Marc T. Thompson
-
Publication number: 20110038286Abstract: A system comprising a first serializer/deserializer coupled to a first electronic device and a second serializer/deserializer couple to a second electronic device is provided. The first serializer/deserializer comprises a forward channel driver and the second serializer/deserializer comprises a reverse channel driver. A communication medium is coupled between the first and second serializer/deserializers, and the first and second serializer/deserializers are AC coupled to the communication medium to provide a high frequency forward channel and are DC coupled to the communication medium to provide a low frequency reverse channel.Type: ApplicationFiled: May 4, 2010Publication date: February 17, 2011Applicant: INTERSIL AMERICAS INC.Inventors: Paul Ta, Wei Wang
-
Publication number: 20110038242Abstract: Provided herein are hybrid laser diode drivers (LDDs) that drive a laser diode in response to receiving enable signals from a controller. In accordance with specific embodiments, a hybrid LDD includes a read channel to selectively output a read current, one or more write channel each to selectively output a write current, and an oscillator channel to selectively output an oscillator current. Additionally, in specific embodiments the hybrid LDD includes a state machine that receives the enable signals from the controller, and based on the enable signals, controls timing of the currents output by the read, write and oscillator channels.Type: ApplicationFiled: October 4, 2010Publication date: February 17, 2011Applicant: INTERSIL AMERICAS INC.Inventors: Theodore D. Rees, Akihiro Asada
-
Patent number: 7888925Abstract: A method of operating a synchronous power converter generates a control signal in a load current compensation circuit based on a light load condition at the converter, where the control signal controls a gate driver for at least one power switch of the converter. When the gate driver is turned off via the control signal, the method monitors one or more comparison signals in a reference voltage adjustment module of the compensation circuit, a first comparison signal of the one or more comparison signals indicative of a voltage level at a phase node of the converter. Based on a remaining body diode conduction level associated a body diode with the at least one power switch as detected by at least a second comparison signal, the method adjusts a reference voltage for the at least one power switch with the adjustment module until the body diode is no longer conducting.Type: GrantFiled: July 21, 2008Date of Patent: February 15, 2011Assignee: Intersil Americas Inc.Inventor: Noel B. Dequina
-
Patent number: 7890832Abstract: A method for allowing measurement corrections on a chip-by-chip basis. Error correction values are generated responsive to the input value to a circuit of the calibrated integrated circuit chip and to a measured value from the circuit of the calibrated integrated circuit chip. The error correction values are stored within an error correction table within a nonvolatile memory of the integrated circuit chip.Type: GrantFiled: July 12, 2010Date of Patent: February 15, 2011Assignee: Intersil Americas Inc.Inventor: Richard A. Dunipace
-
Patent number: 7889525Abstract: A multi-phase voltage regulator comprises a plurality of current supplying stages, each current supplying stage configured to supply a local output current equaling at least a portion of a load current output from the multi-phase voltage regulator; and a plurality of control circuits, each control circuit coupled to a respective one of the plurality of current supplying stages, wherein each control circuit calculates a control signal based, at least in part, on a sampled current representative of the respective local output current and a sampled current representative of a master output current. The control signal from each control circuit causes the respective current supplying stage to be disabled gradually over a first time interval if the sum of the local output current and the master output current is detected as being below a respective first predetermined level.Type: GrantFiled: March 24, 2010Date of Patent: February 15, 2011Assignee: Intersil Americas Inc.Inventor: Zaki Moussaoui
-
Publication number: 20110025540Abstract: Portions of a digital signal are buffered prior to being provided to a sub-system (e.g., a segmented DAC of a LDD) that is responsive to the digital signal. While being buffered, there is a determination, based on the buffered portions of the digital signal, of when one or more portions of the sub-system and/or another sub-system can be switched from a first state to a second state, where the second state results in less power dissipation than the first state. Additionally, or alternatively, while the portions of the digital signal are being buffered, there can be a determination, based on the buffered portions of the digital signal, of when one or more system related parameters can be adjusted to temporarily reduce power dissipation. Based on results of the determination(s), the state of one or more portions of the sub-system and/or another sub-system is/are selectively switched from the first state to the second state, or vice versa.Type: ApplicationFiled: October 28, 2009Publication date: February 3, 2011Applicant: Intersil Americas Inc.Inventors: Dimitrios Katsis, Barry Concklin
-
Publication number: 20110025217Abstract: An inrush current limiter for use with an LED driver including a current limiting device, a bypass switch device, and a switch drive. The current limiting device is placed in the input current path of the LED driver to limit input current to a predetermined maximum level in response to an AC conductive angle modulated voltage. The bypass switch device is coupled in parallel with the current limit device. The switch drive turns on the bypass switch device to at least partially bypass the current limiting device as a voltage level of an input of a switching converter rises. The input current remains sufficiently high without exceeding the maximum level. The switch drive is implemented with a delay network driven either by a separate transformer winding or by a snubber network. The delay network may have a delay based on the delay caused by the current limiting device.Type: ApplicationFiled: June 24, 2010Publication date: February 3, 2011Applicant: INTERSIL AMERICAS INC.Inventors: Xiaodong Zhan, Fred F. Greenfeld, Xiangxu Yu
-
Patent number: 7880541Abstract: An instrumentation amplifier includes a pair of buffered operational amplifiers that accept a pair of input signals, and a differential operational amplifier that outputs an output signal indicative of a difference between the input signals. A low pass filter provides passive band limiting of the output signal. Each operational amplifier is implemented as a multi-path amplifier that includes a low frequency path and a high frequency path between an input and an output of the operational amplifier. Further, each multi-path amplifier includes a differential input transconductance stage within the low frequency path and a differential input transconductance stage within the high frequency path. Within each multi-path amplifier, the differential input transconductance stage of the high frequency path is noisier than, but consumes less power than, the differential input transconductance stage of the low frequency path.Type: GrantFiled: November 30, 2009Date of Patent: February 1, 2011Assignee: Intersil Americas Inc.Inventor: Philip V. Golden
-
Patent number: 7880443Abstract: The charging circuit for charging a battery of an electronic device using a connected AC power adaptor includes circuitry responsive to an applied regulated voltage for charging the battery connected to the charging circuitry. The circuitry prevents the regulated voltage applied to the circuitry from falling below a settable voltage level. Additionally, the circuitry switches a charging current between a quick charge level and a trickle charge level responsive to a state of a transistor.Type: GrantFiled: April 5, 2007Date of Patent: February 1, 2011Assignee: Intersil Americas Inc.Inventors: Eric Magne Solie, Ronil Dipak Patel, Tu A. Bui
-
Patent number: 7880459Abstract: Provided herein are circuits and methods to generate a voltage proportional to absolute temperature (VPTAT) and/or a bandgap voltage output (VGO). A circuit includes a group of X transistors. A first subgroup of the X transistors are used to produce a first base-emitter voltage (VBE1). A second subgroup of the X transistors are used to produce a second base-emitter voltage (VBE2). The VPTAT can be produced by determining a difference between VBE1 and VBE2. Which of the X transistors are in the first subgroup and used to produce the first base-emitter voltage (VBE1), and/or which of the X transistors are in the second subgroup and used to produce the second base-emitter voltage (VBE2), change over time. Additionally, a circuit portion can be used to generates a voltage complimentary to absolute temperature (VCTAT) using at least one of the X transistors. The VPTAT and the VCTAT can be added to produce the VGO.Type: GrantFiled: April 29, 2008Date of Patent: February 1, 2011Assignee: Intersil Americas Inc.Inventor: Barry Harvey
-
Publication number: 20110019317Abstract: A tunable voltage isolation ground to ground ESD clamp is provided. The clamp includes a dual-direction silicon controlled rectifier (SCR) and trigger elements. The SCR is coupled between first and second grounds. The trigger elements are also coupled between the first and second grounds. Moreover, the trigger elements are configured to provide a trigger current to the dual-direction silicon controlled rectifier when a desired voltage between the first and second grounds is reached.Type: ApplicationFiled: September 29, 2010Publication date: January 27, 2011Applicant: INTERSIL AMERICAS INC.Inventor: James E. Vinson
-
Publication number: 20110019522Abstract: Provided herein are hybrid laser diode drivers (LDDs) that drive a laser diode in response to receiving enable signals from a controller. In accordance with specific embodiments, a hybrid LDD includes a read channel to selectively output a read current, one or more write channel each to selectively output a write current, and an oscillator channel to selectively output an oscillator current. Additionally, in specific embodiments the hybrid LDD includes a decoder that receives the enable signals from the controller, and based on the enable signals, controls timing of the currents output by the read, write and oscillator channels.Type: ApplicationFiled: October 4, 2010Publication date: January 27, 2011Applicant: INTERSIL AMERICAS INC.Inventors: Theodore D. Rees, Akihiro Asada
-
Publication number: 20110018613Abstract: An apparatus comprises a voltage regulator including an high side switching transistor and a low side switching transistor. An high side drive controls operation of the high side switching transistor. A low side driver controls operation of the low side switching transistor. A bootstrap capacitor provides an operating voltage to the high side switching driver. The bootstrap capacitor is charged to a predetermined level responsive to a supply voltage. A low side driver drives the low side switching transistor according to a process that charges the bootstrap capacitor to the predetermined level. The process turns on the low side switching transistor for a first predetermined number of cycles and turns off the low side switching transistor for a second predetermined number of cycles. The process is repeated for a predetermined number of times during startup of the voltage regulator when a prebias load is applied to the voltage regulator.Type: ApplicationFiled: November 3, 2009Publication date: January 27, 2011Applicant: INTERSIL AMERICAS INC.Inventor: JUE WANG
-
Publication number: 20110019316Abstract: An inrush current control circuit selectively short-circuit bypasses an inrush current limiting resistor (R1) of a power supply that includes a switching transistor (Q1) having a control terminal (gate or base) driven in dependence on a pulse width modulated (PWM) drive signal. The inrush current control circuit includes a bypass transistor (Q3), a first resistor (R3), a capacitor (C2), a second resistor (R2) and a diode (D3), wherein an anode terminal of the diode (D3) is connected to one of the terminals of the switching transistor (Q1) of the power supply.Type: ApplicationFiled: July 14, 2010Publication date: January 27, 2011Applicant: INTERSIL AMERICAS INC.Inventors: Xiaodong (David) Zhan, Xiangxu (Alan) Yu
-
Patent number: 7876067Abstract: A connector-less charging circuit includes a transformer having a primary side associated with a secondary side. A primary switch is responsive to a control signal for connecting the transformer to ground during a first portion of a duty cycle, and disconnecting the transformer from ground during the second portion of the duty cycle. An active clamp circuit connects to the primary side of the transformer for recycling leakage energy from the transformer back to the source responsive to the control signal during the second portion of the duty cycle. A PWM controller generates the control signal to both the active clamp circuit and the primary switch.Type: GrantFiled: April 18, 2007Date of Patent: January 25, 2011Assignee: Intersil Americas Inc.Inventors: Fred Greenfeld, Guruprakash Radhakrishnan
-
Patent number: RE42037Abstract: A current-sensing and correction circuit having programmable temperature compensation circuitry that is incorporated into a pulse width modulation controller of a buck mode DC—DC converter. The front end of the controller contains a sense amplifier, having an input coupled via a current feedback resistor to a common output node of the converter. The impedance of a MOSFET, the current through which is sampled by a sample and hold circuit is controlled by the sense amplifier unit. A sensed current correction circuit is coupled between the sample and hold circuit and the controller, and is operative to supply to the controller a correction current having a deterministic temperature-compensating relationship to the sensed current. The ratio of correction current to sensed current equals a value of one at a predetermined temperature, and has other values at temperatures other than at that temperature.Type: GrantFiled: April 20, 2009Date of Patent: January 18, 2011Assignee: Intersil Americas Inc.Inventor: Robert Haynes Isham
-
Patent number: RE42063Abstract: A multi-phase DC/DC converter having an output voltage and including a plurality of converter channels. Each converter channel includes a converter channel input and a converter channel output. Each converter channel is configured for generating a converter channel current and for adjusting said converter channel current in response to a control signal electrically connected to each converter channel input. A control circuit generates an error signal representative of a comparison of the converter output voltage to a reference voltage. The control circuit includes a plurality of control circuit channels, each of which correspond to a converter channel. Each control circuit channel generates a channel current signal representative of a corresponding converter channel current, and generates a differential channel current signal representative of a comparison of the channel current signal to an average current signal.Type: GrantFiled: December 1, 2008Date of Patent: January 25, 2011Assignee: Intersil Americas Inc.Inventors: Michael M. Walters, Charles E. Hawkes, Robert H. Isham
-
Patent number: RE42123Abstract: A subscriber line interface circuit has a battery-powered, high voltage analog section, that drives tip and ring lines of a subscriber loop, and a mixed signal (low voltage and digital signal processing) section, that monitors and controls the high voltage analog section. An input signal receiving unit of the high voltage analog section conditions input voice and low voltage signaling and ringing signals from the mixed signal section, for application to a dual mode, programmable gain, tip/ring amplifier coupled to the loop. A sense amplifier at the output of the tip/ring amplifier is through an auxiliary amplifier to an analog feedback monitor port for closing a loop to synthesize the circuit's output impedance.Type: GrantFiled: July 8, 2008Date of Patent: February 8, 2011Assignee: Intersil Americas Inc.Inventors: Leonel Ernesto Enriquez, Douglas Lawton Youngblood, Edward Berrios
-
Patent number: RE42142Abstract: A controllably alternating buck mode DC-DC converter conducts cycle by cycle analysis of the direction of inductor current flow to decide whether to operate in synchronous buck mode or standard buck mode for the next successive cycle. For each cycle of the PWM waveform controlling the buck mode DC-DC converter, a mode control circuit examines and latches data representative of the direction of inductor current flow relative to the chargeable battery. If the inductor current flow is positive, a decision is made to operate in synchronous buck mode for the next PWM cycle, which allows positive current to charge the battery; if the inductor current drops to zero, a decision is made to operate the converter in standard buck mode for the next PWM cycle, so as to prevent current from flowing out of the battery and boosting the system bus.Type: GrantFiled: June 26, 2009Date of Patent: February 15, 2011Assignee: Intersil Americas Inc.Inventors: Eric Magne Solie, Thomas A. Jochum