Patents Assigned to Materious, LLC
  • Patent number: 8900794
    Abstract: A photoacid generator compound has the formula (I): [A-(CHR1)p]k-(L)-(CH2)m—(C(R2)2)n—SO3?Z+??(I) wherein A is a substituted or unsubstituted, monocyclic, polycyclic, or fused polycyclic C5 or greater cycloaliphatic group optionally comprising O, S, N, F, or a combination comprising at least one of the foregoing, R1 is H, a single bond, or a substituted or unsubstituted C1-30 alkyl group, wherein when R1 is a single bond, R1 is covalently bonded to a carbon atom of A, each R2 is independently H, F, or C1-4 fluoroalkyl, wherein at least one R2 is not hydrogen, L is a linking group comprising a sulfonate group, a sulfonamide group, or a C1-30 sulfonate or sulfonamide-containing group, Z is an organic or inorganic cation, p is an integer of 0 to 10,k is 1 or 2, m is an integer of 0 or greater, and n is an integer of 1 or greater.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: December 2, 2014
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Emad Aqad, Cheng-Bai Xu, Mingqi Li, Shintaro Yamada, William Williams, III
  • Patent number: 8900666
    Abstract: Stable tin-free palladium catalysts are used to metalize through-holes of printed circuit boards. A stabilizer is included in the catalyst formulation which prevents precipitation and agglomeration of the palladium.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: December 2, 2014
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Feng Liu, Maria Anna Rzeznik
  • Patent number: 8895978
    Abstract: An ohmic contact between an electrode and a semiconductor layer is more stably formed and an electrical contact resistance between them is further reduced. A semiconductor device comprises a semiconductor layer 103 composed of an oxide semiconductor material containing indium, an ohmic electrode 107 provided on the semiconductor layer 103 and having an ohmic contact with the semiconductor layer 103, and an intermediate layer 106 provided between the semiconductor layer 103 and the ohmic electrode 107, wherein the intermediate layer 106 includes a first region 106a whose indium atomic concentration is greater than that of an interior of the semiconductor layer 103 and a second region 106b whose indium atomic concentration is less than that of the first region.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: November 25, 2014
    Assignee: Advanced Interconnect Materials, LLC
    Inventors: Junichi Koike, Pilsang Yun, Hideaki Kawakami
  • Patent number: 8894760
    Abstract: A Group 3a ink, comprising, as initial components: a polyamine solvent; a Group 3a material/organic complex; and, a reducing agent; wherein the molar concentration of the reducing agent exceeds the molar concentration of the Group 3a material/organic complex; wherein the Group 3a ink is a stable dispersion and wherein the Group 3a ink is hydrazine and hydrazinium free. Also provided are methods of preparing the Group 3a ink and of using the Group 3a ink to deposit a Group 3a material on a substrate for use in a variety of semiconductor applications, such as metallization of silicon devices in VLSI technology, the growth of semiconducting III-V alloys, thin film transistors (TFTs), light emitting diodes (LEDs); and infrared detectors.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: November 25, 2014
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Kevin Calzia, David W. Mosley
  • Patent number: 8889344
    Abstract: In one aspect, coating compositions are provided that comprise a component a component that comprises one or more silicon, antimony, aluminum, yttrium, cerium, lanthanum, tin, titanium, zirconium, hafnium, indium or zinc compounds. In another aspect, coating compositions are provided that comprise a plurality of discrete particles. Preferred coating compositions of the invention are useful for antireflective purposes, particularly with an underlaying photoresist coating layer, as well as for a barrier layer in immersion lithography.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: November 18, 2014
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Gregory P. Prokopowicz, Michael K. Gallagher
  • Patent number: 8888984
    Abstract: Tin-silver alloy electroplating baths having certain amine-oxide surfactants and methods of electrodepositing a tin-silver-containing layer using these baths are disclosed. Such electroplating baths are useful to provide tin-silver solder deposits having reduced void formation and improved within-die uniformity.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: November 18, 2014
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Inho Lee, Elissei Iagodkine, Yi Qin, Yu Luo
  • Publication number: 20140331930
    Abstract: Methods, systems, and apparatuses for nanowire deposition are provided. A deposition system includes an enclosed flow channel, an inlet port, and an electrical signal source. The inlet port provides a suspension that includes nanowires into the channel. The electrical signal source is coupled to an electrode pair in the channel to generate an electric field to associate at least one nanowire from the suspension with the electrode pair. The deposition system may include various further features, including being configured to receive multiple solution types, having various electrode geometries, having a rotatable flow channel, having additional electrical conductors, and further aspects.
    Type: Application
    Filed: July 24, 2014
    Publication date: November 13, 2014
    Applicants: SHARP KABUSHIKI KAISHA, OneD Material LLC
    Inventors: Erik Freer, James M. Hamilton, David P. Stumbo, Kenji Komiya, Akihide Shibata
  • Patent number: 8883400
    Abstract: Topcoat layer compositions are provided that are applied above a photoresist composition. The compositions find particular applicability to immersion lithography processing.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: November 11, 2014
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Deyan Wang, Chunyi Wu
  • Patent number: 8883407
    Abstract: In one aspect, organic coating compositions, particularly antireflective coating compositions, are provided that comprise a diene/dienophile reaction product. In another aspect, organic coating compositions, particularly antireflective coating compositions, are provided that comprise a component comprising a hydroxyl-naphthoic group, such as a 6-hydroxy-2-naphthoic group Preferred compositions of the invention are useful to reduce reflection of exposing radiation from a substrate back into an overcoated photoresist layer and/or function as a planarizing, conformal or via-fill layer.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: November 11, 2014
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: John P. Amara, James F. Cameron, Jin Wuk Sung, Gregory P. Prokopowicz
  • Publication number: 20140327340
    Abstract: The present invention has an object to provide a piezoelectric material that endures high temperatures, the resources of raw materials of which are abundant, and that is stably suppliable. Disclosed is a piezoelectric element, including: a piezoelectric member having a surface for receiving external stress and a side surface that is perpendicular to the surface for receiving external stress; and at least one pair of a first electrode and a second electrode that are placed on the side surface, the first electrode being provided so as to separate from the second electrode. The piezoelectric member is preferably cut out from a piezoelectric material that includes gehlenite (Ca2Al2SiO7) in a predetermined crystal orientation. The piezoelectric member utilizes a transverse piezoelectric effect, and is preferably a (XYt) 45°-cut piece. The electrodes are preferably provided on surfaces that are parallel to the YZ plane.
    Type: Application
    Filed: May 2, 2013
    Publication date: November 6, 2014
    Applicants: Sakai Chemical Industry Co., Ltd., Energy Storage Materials LLC
    Inventors: Energy Storage Materials LLC, Sakai Chemical Industry Co., Ltd.
  • Patent number: 8871428
    Abstract: New photoresist compositions are provided that are useful for immersion lithography. Preferred photoresist compositions of the invention comprises two or more distinct materials that can be substantially non-mixable with a resin component of the resist. Particularly preferred photoresists of the invention can exhibit reduced leaching of resist materials into an immersion fluid contacting the resist layer during immersion lithography processing.
    Type: Grant
    Filed: September 3, 2012
    Date of Patent: October 28, 2014
    Assignee: Rohm and Haas Electronics Materials LLC
    Inventors: Deyan Wang, Cheng-Bai Xu, George G. Barclay
  • Patent number: 8866140
    Abstract: Making it possible to improve adhesion between the semiconductor layer and the electrodes, realize high-speed operation of the thin-film transistor by enhancing ohmic contact between these members, reliably prevent oxidation of the electrode surfaces, and realize an electrode fabrication process with few processing steps. The thin-film transistor 10 of the present invention includes a semiconductor layer 4 composed of oxide semiconductor, a source electrode 5 and a drain electrode 6 that are layers composed mainly of copper, and oxide reaction layers 22 provided between the semiconductor layer 4 and each of the source electrode 5 and drain electrode 6, and high-conductance layers 21 provided between the oxide reaction layers 22 and semiconductor layer 4.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: October 21, 2014
    Assignee: Advanced Interconnect Materials, LLC
    Inventors: Junichi Koike, Pilsang Yun, Hideaki Kawakami
  • Patent number: 8859705
    Abstract: A hydrogel tissue adhesive having decreased gelation time and decreased degradation time is described. The hydrogel tissue adhesive is formed by reacting an oxidized polysaccharide containing aldehyde groups with a water-dispersible, multi-arm amine in the presence of a thiol additive. The thiol additive accelerates the process to form the hydrogel and accelerates the degradation of the hydrogel formed. The hydrogel may be useful as a tissue adhesive or sealant for medical applications, such as a hemostat sealant or to prevent undesired tissue-to-tissue adhesions resulting from trauma or surgery.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: October 14, 2014
    Assignee: Actamax Surgical Materials LLC
    Inventors: Helen S. M. Lu, Cara L. Blankenbicker
  • Publication number: 20140295347
    Abstract: Acid generator compounds are provided that comprise an oxo-1,3-dioxolane moiety and/or an oxo-1,3-dioxane moiety. The acid generators are particularly useful as a photoresist composition component.
    Type: Application
    Filed: March 30, 2013
    Publication date: October 2, 2014
    Applicant: Rohm and Haas Electronic Materials, LLC
    Inventor: Rohm and Haas Electronic Materials, LLC
  • Patent number: 8846095
    Abstract: A tissue adhesive formed by reacting an aminodextran containing primary amine groups with an oxidized dextran containing aldehyde groups is described. The dextran-based polymer tissue adhesive is particularly useful in medical applications where low swell and slow degradation are needed, for example sealing the dura, ophthalmic procedures, tissue repair, antiadhesive applications, drug delivery, and as a plug to seal a fistula or the punctum.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: September 30, 2014
    Assignee: Actamax Surgical Materials, LLC
    Inventor: Helen S. M. Lu
  • Patent number: 8834785
    Abstract: A method for producing a metal article according to one embodiment may involve the steps of: Providing a composite metal powder including a substantially homogeneous dispersion of molybdenum and molybdenum disulfide sub-particles that are fused together to form individual particles of the composite metal powder; and compressing the molybdenum/molybdenum disulfide composite metal powder under sufficient pressure to cause the mixture to behave as a nearly solid mass.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: September 16, 2014
    Assignee: Climax Engineered Materials, LLC
    Inventors: Matthew C. Shaw, Carl V. Cox, Yakov Epshteyn
  • Publication number: 20140248543
    Abstract: The present invention relates to nanostructured materials for use in rechargeable energy storage devices such as lithium batteries, particularly rechargeable secondary lithium batteries, or lithium-ion batteries (LIBs). The present invention includes materials, components, and devices, including nanostructured materials for use as battery active materials, and lithium ion battery (LIB) electrodes comprising such nanostructured materials, as well as manufacturing methods related thereto. Exemplary nanostructured materials include silicon-based nanostructures such as silicon nanowires and coated silicon nanowires, nanostructures disposed on substrates comprising active materials or current collectors such as silicon nanowires disposed on graphite particles or copper electrode plates, and LIB anode composites comprising high-capacity active material nanostructures formed on a porous copper and/or graphite powder substrate.
    Type: Application
    Filed: October 2, 2012
    Publication date: September 4, 2014
    Applicant: OneD Material LLC
    Inventors: Yimin Zhu, Chunsheng Du, Joon Shin
  • Publication number: 20140245675
    Abstract: A glazing assembly is disclosed. The glazing assembly includes a frame assembly including a frame member and a pane assembly secured within the frame assembly and defining a first plane. A radiant barrier member on the frame member is configured to reflect infrared radiation in a direction substantially perpendicular to the first plane.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 4, 2014
    Applicant: Associated Materials, LLC
    Inventors: Anthony P. Bouquot, Robert A. Jablonski, Dan Green, Steven R. Harp, William J. Nowak
  • Patent number: 8821739
    Abstract: A method for processing a substrate is provided; wherein the method comprises applying a film of a copolymer composition, comprising a poly(styrene)-b-poly(siloxane) block copolymer component; and, an antioxidant to a surface of the substrate; optionally, baking the film; subjecting the film to a high temperature annealing process under a gaseous atmosphere for a specified period of time; followed by a treatment of the annealed film to remove the poly(styrene) from the annealed film and to convert the poly(siloxane) in the annealed film to SiOx.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: September 2, 2014
    Assignees: Rohm and Haas Electronic Materials LLC, Dow Global Technologies LLC
    Inventors: Xinyu Gu, Shih-Wei Chang, Phillip D. Hustad, Jeffrey D. Weinhold, Peter Trefonas
  • Patent number: 8822616
    Abstract: A block copolymer formulation is provided including a block copolymer blend including a first poly(acrylate)-b-poly(silyl acrylate) block copolymer; and, a second poly(acrylate)-b-poly(silyl acrylate) block copolymer. Also provided are substrates treated with the block copolymer formulation.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: September 2, 2014
    Assignees: Rohm and Haas Electronic Materials LLC, Dow Global Technologies LLC
    Inventors: Phillip Hustad, Peter Trefonas, Xinyu Gu, Shih-Wei Chang, Valeriy Ginzburg, Erin Vogel, Daniel Murray