Patents Assigned to MaxLinear, Inc.
-
Patent number: 9572043Abstract: A first microwave backhaul transceiver may comprise a plurality of antenna elements. The transceiver may determine atmospheric conditions between it and one or more potential link partners, and adjust a radiation pattern of the plurality of antenna elements based on the determined atmospheric conditions. A first radiation pattern of the plurality of antenna elements may correspond to a first microwave backhaul link between the first microwave transceiver and a second microwave backhaul transceiver. A second radiation pattern of the plurality of antenna elements may correspond to a second microwave backhaul link between the first microwave transceiver and a third microwave backhaul transceiver. The transceiver may adjust the radiation pattern based on characteristics of data to be transmitted, and based on a routing table it maintains.Type: GrantFiled: May 10, 2016Date of Patent: February 14, 2017Assignee: MAXLINEAR, INC.Inventor: Curtis Ling
-
Patent number: 9565464Abstract: Methods and systems for multi-path video and network channels may comprise a communication device comprising a wideband path (WB) and a narrowband path (NB). A video channel and a network channel may be received in the WB when the device is operating in a first stage. A video channel and a network channel may be received in the WB and the network channel may also be received in the NB when the device is operating in a second stage. The network channel may be received in the NB when the device is operating in a third stage. The reception of the network channel from both the WB and NB may enable a continuous reception of the network channel in a transition between the first and third stages. The WB may be operable to receive a plurality of channels and the NB may be operable to receive a single channel.Type: GrantFiled: January 5, 2016Date of Patent: February 7, 2017Assignee: Maxlinear, Inc.Inventors: Anand Anandakumar, Sheng Ye, Curtis Ling
-
Patent number: 9565038Abstract: An electronic receiver may generate a differential detection sequence based on a received symbol sequence and based on a m-symbol delayed version of the received symbol sequence, where m is an integer greater than 1. The particular differential detection sequence may be a result of an element-by-element multiplication of the particular received symbol sequence and the conjugate of an m-symbol delayed version of the particular received symbol sequence. The receiver may calculate differential decision metrics based on the differential detection sequence and based on a set of differential symbol sequences generated from the set of possible transmitted symbol sequences. The receiver may generate a decision as to which of a set of possible transmitted symbol sequences resulted in the received symbol sequence, where the decision is based on the differential decision metrics and the set of possible transmitted symbols sequences.Type: GrantFiled: January 26, 2016Date of Patent: February 7, 2017Assignee: MAXLINEAR, INC.Inventors: Ioannis Spyropoulos, Anand Anandakumar
-
Patent number: 9559835Abstract: A signal receiver may comprise circuitry for applying multi-level sampling to an input signal, using a plurality of sampling rates that comprises at least two different sampling rates, and circuitry for processing one or more outputs of the multi-level sampling. The processing may comprises sampling at a sampling rate that is different than each of the plurality of sampling rates used during the multi-level sampling and applying analog-to-digital conversion. At least one of the sampling rates used during the multi-level sampling and/or the sampling rate used during the processing may be set based on configuring of one or more clock signals used during the multi-level sampling and/or during the processing. At least one of the one or more clock signals may be configured based on reduction of frequency of a corresponding base clock signal.Type: GrantFiled: December 8, 2014Date of Patent: January 31, 2017Assignee: MAXLINEAR, INC.Inventors: Jianyu Zhu, Sheng-Yu Peng, Rodney Chandler, Pawan Tiwari, Rahul Bhatia, Eric Fogleman
-
Patent number: 9560477Abstract: A wireless communication device (WCD) establishes an ad-hoc communication link with a second WCD within operating range. A replica of at least a portion of a display of the first WCD may be shared with the second WCD utilizing wireless broadband signals that are communicated via the established one or more ad-hoc communication links. The first WCD and the second WCD are operable to communicate the wireless broadband signals at a power level that is below a spurious emissions mask. The transmitted wireless broadband signals are spread so they occupy a designated frequency spectrum band. The shared replica of at least a portion of the display of the first WCD includes one or more applications, text, video and/or data content. A user of the first WCD may interact with content that is displayed on a display of the second WCD and vice-versa.Type: GrantFiled: April 26, 2016Date of Patent: January 31, 2017Assignee: MAXLINEAR, INC.Inventors: Curtis Ling, Timothy Gallagher
-
Patent number: 9559983Abstract: A network device may comprise a first connector for connecting to an external network in which upstream data over cable service interface specification (DOCSIS) signals are communicated using a first frequency band and downstream cable and/or DOCSIS signals are communicated using a second frequency band. The device may also comprise a second connector for connecting to an on-premises network, as well as circuitry residing in a signal path between the first connector and the second connector. The circuitry may be operable to permit the downstream cable and/or DOCSIS signals to pass from the first connector to the second connector, and to block the upstream DOCSIS signals from passing from the first connector to the second connector. The circuitry may be operable to transmit, via the second connector, non-DOCSIS signals into the on-premises network using the first frequency band.Type: GrantFiled: March 27, 2013Date of Patent: January 31, 2017Assignee: Maxlinear, Inc.Inventors: Sridhar Ramesh, Timothy Leo Gallagher, Curtis Ling
-
Patent number: 9551792Abstract: A system and method for improving acquisition sensitivity and tracking performance of a GPS receiver using multiple antennas is provided. In an embodiment, the acquisition sensitivity can be improved by determining the correlation weight of each received path signal associated with one antenna from a plurality of antennas and then combining the path signals based on their respective correlation weight. In another embodiment, carrier offset correction information of each path signal is individually determined and then summed together to be used for tracking the code phase in a code phase tracking loop. The code phase tracking loop generates an early code and a late code that are used to determine the code phase error. The system includes digital adaptive filters to mitigate narrowband and broadband noises of a received GPS signal, wherein the digital adaptive filters are switched on periodically or by external events.Type: GrantFiled: January 16, 2014Date of Patent: January 24, 2017Assignee: MaxLinear, Inc.Inventors: Anand K. Anandakumar, Maxime LeClercq
-
Patent number: 9549222Abstract: A coupling device for use in a hybrid fiber coaxial (HFC) network may be configured to disable an upstream path through it when there is only noise incident on the upstream path, and enable the upstream path through it when a desired transmission from a cable modem downstream of the coupling device is incident on the upstream path. The coupling device may be a trunk amplifier, a distribution amplifier, a splitter, or the like. The coupling device may comprise a single upstream interface coupled to a plurality of downstream interfaces. The enabling and/or disabling may be in response to a signal strength indicated by the SSI being below a threshold and/or in response to one or more control messages indicating whether any downstream cable modem is, or will be, transmitting.Type: GrantFiled: May 22, 2015Date of Patent: January 17, 2017Assignee: Maxlinear, Inc.Inventors: Curtis Ling, Sridhar Ramesh, Timothy Gallagher
-
Patent number: 9548542Abstract: A first spatial crossbar may transmit data to a second spatial crossbar via a first millimeter wave beam between the first spatial crossbar and the second spatial crossbar. The first spatial crossbar may also transmit data to a third spatial crossbar via a second millimeter wave beam between the first spatial crossbar and the second spatial crossbar. The first millimeter wave beam may emanate from the first spatial crossbar at a first angle and be redirected toward the second spatial crossbar by a reflective surface. The second millimeter wave beam may emanate from the first spatial crossbar at a second angle and be redirected toward the third spatial crossbar by a reflective surface. The transmission to the second spatial crossbar may be concurrent with the transmission to the third spatial crossbar.Type: GrantFiled: June 24, 2014Date of Patent: January 17, 2017Assignee: Maxlinear, Inc.Inventor: Curtis Ling
-
Patent number: 9544076Abstract: A transceiver system may be configured to provide tunable bandwidths. The transceiver may comprise a signal processing component and a filtering component, which may comprise a plurality of filters. The signal processing component may determine one or more adjustments that are applicable to one or both of a first filter that is configured for filtering signals corresponding to a first frequency band associated with a first stream, and a second filter that is configured for filtering signals corresponding to a second frequency band associated with a second stream. The one or more adjustments may correspond to modifications in one or both of the first frequency band and the second frequency band. The one or more adjustments may be communicated to the filtering component, which may apply the adjustments to one or more of the plurality of filters.Type: GrantFiled: May 4, 2013Date of Patent: January 10, 2017Assignee: MAXLINEAR, INC.Inventors: Glenn Chang, Sridhar Ramesh, Timothy Gallagher
-
Patent number: 9543973Abstract: Aspects of a method and system for data converters having a transfer function with multiple operating zones. In some embodiments, an operating zone of the multiple operating zones is characterized by more stringent performance criteria than the other operating zones. Thus, such data converters may receive an input signal and generate an output signal from the input signal per the transfer function and the more stringent performance criteria in the appropriate operating zone.Type: GrantFiled: October 28, 2015Date of Patent: January 10, 2017Assignee: MAXLINEAR, INC.Inventor: Curtis Ling
-
Patent number: 9537494Abstract: A phase locked loop may be operable to generate, utilizing a frequency doubler, a reference clock signal whose frequency is twice a frequency of a crystal clock signal and is keyed on both rising and falling edges of the crystal clock signal. A sampled loop filter (SLPF) in the phase locked loop may capture charge from a charge pump (CHP) in the phase locked loop and the charge is captured at a frequency corresponding to the frequency of the reference clock signal. A switch of the sampled loop filter is utilized and controlled to manage holding and releasing of the captured charge, where the switch is controlled utilizing a control signal. By utilizing the sampled loop filter in the phase locked loop, the phase locked loop may eliminate, at an output of the charge pump, disturbance which is associated with duty cycle errors of the crystal clock signal.Type: GrantFiled: September 21, 2015Date of Patent: January 3, 2017Assignee: MaxLinear, Inc.Inventor: Sheng Ye
-
Patent number: 9537503Abstract: Systems and methods are provided for detecting meta-stability during processing of signals. A meta-stability detector may comprise a timing control circuit, a plurality of signal adjustment circuits, and a plurality of signal state circuits. The timing control circuit may measure comparison time for each conversion cycle during analog-to-digital conversions. Each signal adjustment circuit may apply a logical operation to one or more input signals to the signal adjustment circuit, and provide a corresponding output signal. Each signal state circuit may store state information relating to one or more input signals to the signal state circuit, for at least one processing cycle; and provide an output signal based on prior stored information. The plurality of signal state circuits, plurality of signal adjustment circuits, and the timing control circuit may be arranged to generate one or more control signals for controlling an analog-to-digital converter (ADC) during the analog-to-digital conversions.Type: GrantFiled: May 10, 2016Date of Patent: January 3, 2017Assignee: MAXLINEAR, INC.Inventors: Xuefeng Chen, Kok Lim Chan, Eric Fogleman, Sheng Ye
-
Patent number: 9537498Abstract: Methods and systems for charge compensation for switched-capacitor circuits may comprise, in an electronics device comprising a first voltage source, a switched capacitor load, and a switched capacitor compensation circuit: switching a capacitor in the switched capacitor load from a first voltage to a second voltage; providing a charge to the switched capacitor load from the switched capacitor compensation circuit without requiring added charge from the first voltage source. A reference voltage may be generated utilizing the first voltage source. A replica reference voltage for the switched capacitor compensation circuit may be generated utilizing a second voltage source. The replica reference voltage may be equal to the reference voltage. The replica reference voltage may be equal to a supply voltage, VDD, for circuitry in the electronics device. Capacitors may couple outputs of the first and second voltage sources to ground.Type: GrantFiled: January 20, 2015Date of Patent: January 3, 2017Assignee: MaxLinear, Inc.Inventors: Hao Liu, Yongjian Tang
-
Patent number: 9531419Abstract: Methods and systems are provided for multi-chip receivers with loop-through feeds. A receiver that comprises plurality of chips may receive one or more input feeds, with each of the chips generating a corresponding output comprising data (e.g., channels) extracted from the one or more input feeds. Only a first chip may handle reception and/or initial processing of the one or more input feeds, with each one of the remaining chips processing a loop-through feed generated in the first chip, in order to generate the corresponding output of that chip. The loop-through feed may be generated based on the one or more input feeds. In this regard, the loop-through feed may comprise at least one of the one or more input feeds that is partially processed in the first one of the plurality of chips.Type: GrantFiled: August 18, 2015Date of Patent: December 27, 2016Assignee: MAXLINEAR, INC.Inventors: Glenn Chang, Sridhar Ramesh, Curtis Ling
-
Patent number: 9509405Abstract: In a first configuration, circuitry of a fiber node may be configured to modulate an optical carrier by an analog upstream electrical signal received via the electrical network. In a second configuration, the circuitry may be configured to digitize the analog upstream electrical signal to generate a digitized upstream signal, and modulate the optical carrier with the digitized upstream signal. An optical receiver of the fiber node may be configured to convert a downstream optical signal to a downstream electrical signal. In the first configuration, the downstream electrical signal may be a first analog signal and the circuitry may be configured to output the first analog signal into the electrical network. In a third configuration, the downstream electrical signal is a digitized waveform and the circuitry is configured to convert the digitized waveform to a second analog signal and output the second analog signal into the electrical network.Type: GrantFiled: January 16, 2014Date of Patent: November 29, 2016Assignee: Maxlinear, Inc.Inventor: Curtis Ling
-
Patent number: 9509422Abstract: A direct broadcast satellite (DBS) reception assembly may comprise an integrated circuit that is configurable between or among a plurality of configurations based on content requested by client devices served by the DBS reception assembly. In a first configuration, multiple satellite frequency bands may be digitized by the integrated circuit as a single wideband signal. In a second configuration, the satellite frequency bands may be digitized by the integrated circuit as a plurality of separate narrowband signals. The integrated circuit may comprise a plurality of receive paths, each of the receive chains comprising a respective one of a plurality of low noise amplifiers and a plurality of analog-to-digital converters.Type: GrantFiled: November 23, 2015Date of Patent: November 29, 2016Assignee: MAXLINEAR, INC.Inventors: Glenn Chang, Raja Pullela, Madhukar Reddy, Timothy Gallagher, Shanta Murthy Prem Swaroop, Curtis Ling, Vamsi Paidi, Wenjian Chen
-
Patent number: 9509340Abstract: In an example implementation of this disclosure, a message passing low density parity check (LDPC) decoder may, during decoding of a first group of bits, lock a first variable node upon a bit-value probability of the first variable node reaching a determined threshold, and lock a first check node upon all variable nodes connected to the first check node being locked. The LDPC decoder may cease decoding the first group of bits upon all variable nodes of the LDPC decoder being locked, all check nodes of the LDPC decoder being locked, reaching a maximum number of iterations, or reaching a timeout. During a particular iteration of the decoding of the first group of bits in which the first variable node is locked, the LDPC decoder may refrain from generating a bit-value probability for the locked first variable node.Type: GrantFiled: March 21, 2016Date of Patent: November 29, 2016Assignee: Maxlinear, Inc.Inventors: Mingrui Zhu, Curtis Ling, Timothy Gallagher
-
Patent number: 9503137Abstract: A first microwave backhaul assembly comprises a first antenna, a front-end circuit, an inter-backhaul-assembly interface circuit, and an interference cancellation circuit. The first antenna is operable to receive a first microwave signal. The front-end circuit is operable to convert the first microwave signal to a lower-frequency digital signal, wherein the lower-frequency digital signal has energy of a second microwave signal and energy of a third microwave signal. The inter-backhaul-assembly interface circuit is operable to receive information from a second microwave backhaul assembly. The interference cancellation circuit is operable to use the information received via the inter-backhaul-assembly interface circuit during processing of the lower-frequency digital signal to remove, from the first microwave signal, the energy of the third microwave signal. The information received via the inter-backhaul-assembly interface may comprise a signal having energy of the second microwave signal.Type: GrantFiled: February 23, 2016Date of Patent: November 22, 2016Assignee: MAXLINEAR, INC.Inventors: Stephane Laurent-Michel, Curtis Ling
-
Patent number: 9494692Abstract: Methods and systems for power optimization of a global navigation satellite system may comprise receiving LEO RF satellite signals utilizing a LEO satellite signal receiver path (LEO Rx) in a wireless communication device (WCD). Circuitry in the LEO Rx may be configured in a powered down state based on a sleep schedule. A location of the wireless communication device may be determined utilizing LEO signals received by the LEO Rx. The sleep schedule may be based on a desired accuracy of the determined location, the relative strengths of signals received from a plurality of LEO satellites, a relevance factor generated by a position engine and communicated to the sort module, or a desired power level of the WCD. The relative strengths of received signals may be compared utilizing a sort module in a LEO demodulator in the LEO satellite signal receiver path.Type: GrantFiled: September 25, 2012Date of Patent: November 15, 2016Assignee: Maxlinear, Inc.Inventors: Maxime Leclercq, Ioannis Spryopoulos, Nishant Kumar, Saju Palayur