Patents Assigned to MaxLinear, Inc.
  • Patent number: 9490972
    Abstract: A first network device may discover one or more values of one or more parameters corresponding to a plurality of links and/or devices of the network. The first network device may compare the discovered one or more values of the one or more parameters to an expected one or more values of the one or more parameters. The first network device may determine whether to transmit data onto a network path between the first device and one of the plurality of devices based on a result of the comparison, wherein at least one of the plurality of links and/or devices are not part of the network path. The first network device may be operable to utilize the discovered parameter values to generate a security key which may be utilized to encrypt and/or scramble content prior to transmitting the content onto the network.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: November 8, 2016
    Assignee: Maxlinear, Inc.
    Inventor: Timothy Gallagher
  • Patent number: 9484807
    Abstract: A high efficiency switched capacitor voltage regulator circuit and a method of efficiently generating an enhanced voltage from an input voltage supply. An input voltage Vin from a main power source is the base voltage to be pumped to an enhanced voltage. Auxiliary voltage sources V1 and V2 are from sources (or grounds) available in the system. During phase 1 of a clock signal, a pump capacitor is charged to ?V=V2?V1. During phase 2 of the clock signal, the pump capacitor is connected in series between Vin and an output capacitor, resulting in the sum voltage V=Vin+?V being generated across the output capacitor.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: November 1, 2016
    Assignee: Maxlinear, Inc.
    Inventors: Branislav Petrovic, Joseph Nabicht
  • Patent number: 9484975
    Abstract: A microwave backhaul system may comprise a monolithic integrated circuit comprising an on-chip transceiver, digital baseband processing circuitry, and auxiliary interface circuitry. The on-chip transceiver may process a microwave signal from an antenna element to generate a first pair of quadrature baseband signals and convey the first pair of phase-quadrature baseband signals to the digital baseband processing circuitry. The auxiliary interface circuitry may receive one or more auxiliary signals from a source that is external to the monolithic integrated circuit and convey the one or more auxiliary signals to the digital baseband processing circuitry. The digital baseband processing circuitry may be operable to process signals to generate one or more second pairs of phase-quadrature digital baseband signals.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: November 1, 2016
    Assignee: MAXLINEAR, INC.
    Inventors: Kishore Seendripu, Raja Pullela, Madhukar Reddy, Timothy Gallagher
  • Patent number: 9484986
    Abstract: A first mobile consumer electronic device comprises a broadband near-field communications (BNC) transceiver and is configured to operate as a main processing unit for a second mobile consumer electronic device that is configured as a thin-client. The first mobile consumer electronic device may capture, via the BNC transceiver, a signal over a range of frequencies that spans multiple frequency bands which are licensed by a regulatory authority. The first mobile consumer electronic device may process the captured signal to determine which of the multiple frequency bands are not currently in use by other devices. The first mobile consumer electronic device may select a plurality of the frequency bands. The first mobile consumer electronic device may transmit, via the BNC transceiver, a signal over the selected plurality of frequency bands at a determined strength, where the signal carries video data destined for the second mobile consumer electronic device.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: November 1, 2016
    Assignee: MAXLINEAR, INC.
    Inventor: Curtis Ling
  • Patent number: 9461742
    Abstract: Circuitry of a fiber node which is configured to couple to an optical link and an electrical link may comprise an electrical-to-optical conversion circuit for transmitting on the optical link. The circuitry may be operable to receive signals via the optical link. The circuitry may select between or among different configurations of the electrical-to-optical conversion circuit based on the signals received via the optical link. The signals received via the optical link may be intended for one or more gateways served by the fiber node or may be dedicated signals intended for configuration of the circuitry. The circuitry may be operable to generate feedback and insert the feedback into a datastream received from one or more gateways via the electrical link prior to transmitting the datastream onto the optical link.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: October 4, 2016
    Assignee: Maxlinear, Inc.
    Inventor: Curtis Ling
  • Patent number: 9461651
    Abstract: Systems and methods are provided for detection and compensation of dielectric resonator oscillator frequency drift. DRO frequency drift detection and compensation may be applied in a system (e.g., outdoor unit) during handling of received signals. The DRO frequency drift detection and compensation may comprise, for each input signal, obtaining DRO frequency drift related information, related to the input signal; determining, based on the obtained DRO frequency drift related information, one or more adjustments applicable to processing of the input signal and/or the generation of the output signal using the at least portion of the input signal; and applying the one or more adjustments. The DRO frequency drift detection and compensation may be applied continually, occasionally, and/or periodically.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: October 4, 2016
    Assignee: MAXLINEAR, INC.
    Inventors: Sridhar Ramesh, Subramanian Anantharaman, Harish Maller
  • Patent number: 9461666
    Abstract: Methods and systems are provided for dynamic power switching in current-steering digital-to-analog converters (DACs). A DAC circuit may be configured to apply digital-to-analog conversions based on current steering, and to particularly incorporate use of dynamic power switching during conversions. The DAC circuit may comprise a main section, which may connect a main supply voltage to a main current source. The main section may comprise a positive-side branch and a negative-side branch, which may be configured to steer positive-side and negative-side currents, such as in a differential manner, to effectuate the conversions. The dynamic power switching may be applied, for example, via a secondary section connecting a main current source in the DAC circuit to a secondary supply voltage. The secondary supply voltage may be configured such that it may be less than the main supply voltage used in driving the current steering in the DAC circuit.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: October 4, 2016
    Assignee: MAXLINEAR, INC.
    Inventor: Jianyu Zhu
  • Patent number: 9456431
    Abstract: Methods and systems for precise temperature and timebase PPM error estimation using multiple timebases may comprise in an electronic device comprising a plurality of timebases and measuring a temperature corresponding to the timebases. Frequencies of the timebases at the measured temperature may be compared to determine differential error functions for the timebases. A fine reading of the temperature corresponding to the timebases may be generated based, at least in part, on the measured temperature and the determined differential error functions for the timebases. The timebases may be calibrated utilizing the generated fine reading of the temperature. The timebases may comprise different order temperature dependencies. Models of temperature dependencies of each of the timebases based may be updated, at least in part, on the fine reading of the temperature. A global navigation satellite system (GNSS) clock signal may be periodically utilized to improve the accuracy of the calibration of the timebases.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: September 27, 2016
    Assignee: Maxlinear, Inc.
    Inventors: Curtis Ling, Xing Tan, Hyungjin Kim
  • Patent number: 9445149
    Abstract: Aspects of a method and apparatus for band separation for multiband communication systems are provided. One or more circuits for use in a transceiver may comprise a triplexer and a leakage processing module. The triplexer may comprise a multiband port, a Multimedia Over Coaxial Alliance (MoCA) port, a television upstream port, and a television downstream port. The leakage processing module may comprise a television downstream input port, a cable television downstream output port, a MoCA port, and a cable television upstream port. The leakage processing module may be operable to (1) process a MoCA signal to generate a first compensation signal; (2) process a cable upstream signal to generate a second compensation signal; (3) process a filtered signal based at least in part on the first and second compensation signals; and (4) output the processed filtered signal via the cable television downstream output port of said leakage processing module.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: September 13, 2016
    Assignee: Maxlinear, Inc.
    Inventors: Madhukar Reddy, Timothy Gallagher
  • Patent number: 9444485
    Abstract: Aspects of a method and system for a successive approximation analog-to-digital converter with dynamic search algorithms are provided. In some embodiments, a successive approximation analog-to-digital converter includes a digital-to-analog converter, a comparator, and a search and decode logic modules which cooperate to generate a digital output code representative of the analog input voltage based on a dynamic search algorithm. The dynamic search algorithms may alter a sequence of reference voltages used to successively approximate the analog input voltage based on one or more characteristics of the analog input voltage.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: September 13, 2016
    Assignee: MAXLINEAR, INC.
    Inventors: Raja Pullela, Curtis Ling
  • Patent number: 9438457
    Abstract: A transmitter comprises a first peak-to-average-power ratio (PAPR) suppression circuit, a second peak-to-average-power ratio (PAPR) suppression circuit, and a first modulator. The first PAPR suppression circuit may receive a first sequence of time-domain symbols to be transmitted, alter the first sequence based on each of a plurality of symbol ordering and/or inversion descriptors to generate a corresponding plurality of second sequences of time-domain symbols, measure a PAPR corresponding to each of the second sequences, select one of the plurality of symbol ordering and/or inversion descriptors based on the measurement of PAPR, and convey the selected one of the symbol ordering and/or inversion descriptors to the second PAPR suppression circuit.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: September 6, 2016
    Assignee: MaxLinear, Inc.
    Inventors: Curtis Ling, Tim Gallagher, Elad Shaked
  • Patent number: 9436271
    Abstract: A first device of a multimedia over coax alliance (MoCA) network may grant a second device of the MoCA network permission to enter a power-saving state. While the second device is in the power-saving mode, the first device may grant bandwidth to the second device during one or more predetermined timeslots. The bandwidth may be granted without a corresponding reservation request from the second device. While the second device is in the power-saving state, it may track time utilizing a clock that is synchronized to the system time of the MoCA network, and transmit during one or more of the predetermined timeslots without first transmitting a corresponding reservation request. The second device may utilize a first modulation profile when not operating in the power-saving state, and utilize a second modulation profile when operating in the power-saving state.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: September 6, 2016
    Assignee: MaxLinear, Inc.
    Inventors: Timothy Gallagher, Glenn DeLucio, Curtis Ling
  • Patent number: 9432104
    Abstract: A system may comprise a plurality of signal processing paths, a bin-wise combiner, an inverse transformation block, and a DAC. Each signal processing path may comprise a transformation block that is operable to transform a first time-domain digital signal to an associated frequency-domain signal having a plurality of subband signals. The bin-wise combiner may be operable to combine corresponding subband signals of the plurality of signal processing paths. The inverse transformation block may be operable to transform output of the bin-wise combiner to an second time-domain signal. The DAC may be operable to converts the second time-domain signal to a corresponding analog signal.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: August 30, 2016
    Assignee: Maxlinear, Inc.
    Inventors: Anand K. Anandakumar, Curtis Ling, Sugbong Kang
  • Patent number: 9429658
    Abstract: Methods and systems for a dual mode global navigation satellite system may comprise selectively enabling a medium Earth orbit (MEO) radio frequency (RF) path and a low Earth orbit (LEO) RF path in a wireless communication device to receive RF satellite signals. The signals may be down-converted to determine a position of the wireless device. The signals may be down-converted utilizing local oscillator signals from a phase locked loop (PLL). The RF paths may be time-division duplexed by the selective enabling of the MEO and LEO paths. Acquisition and tracking modules in the MEO RF path may be blanked when the LEO RF path is enabled. The MEO RF path may be powered down when the LEO RF path is enabled. The signals may be down-converted to an intermediate frequency before down-converting to baseband frequencies or may be down-converted directly to baseband frequencies. In-phase and quadrature signals may be processed.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: August 30, 2016
    Assignee: Maxlinear, Inc.
    Inventors: Maxime Leclercq, Ioannis Spyropoulos, Nishant Kumar
  • Patent number: 9432698
    Abstract: Received data packets are groomed to improve performance of MPEG-2 transport stream packet in a digital video broadcasting system. Multitude of crosschecking techniques are applied to ensure that crucial pieces of information such as the packet identifier (PID) field, the continuity counter (CC) field, table ID, section length, IP header checksum, table and frame boundaries, application data table size are corrected if necessary.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: August 30, 2016
    Assignee: MaxLinear, Inc.
    Inventors: Sridhar Ramesh, Sugbong Kang, Brenndon Lee
  • Patent number: 9425887
    Abstract: A satellite dish assembly may comprise a broadcast receive module and a basestation module. The broadcast receive module may be operable to receive a satellite signal, recover media carried in the satellite signal, and output the media. The basestation module may be operable to accept the media output by the broadcast receive module and transmit the media in accordance with one or more wireless protocols. In being conveyed from the broadcast receive module to the basestation, the media content may not traverse any wide area network connection. The one or more wireless protocols may comprise one or more of: a cellular protocol and IEEE 802.11 protocol. The satellite dish assembly may comprise a routing module that may be operable to route data between the broadcast receive module, the basestation, and a gateway.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: August 23, 2016
    Assignee: MAXLINEAR, INC.
    Inventors: Curtis Ling, Timothy Gallagher, Glenn Chang
  • Patent number: 9426734
    Abstract: A network device may be operable to receive an indication from a cable modem termination system (CMTS) that media access control (MAC) management messages will be transmitted by the CMTS at fixed intervals. Subsequent to receiving the indication, the network device may be operable to power down one or more components of the network device and set a sleep timer to a value equal to an integer multiple of the fixed interval minus a transition period. The network device may power up the one or more components of the network device upon expiration of the sleep timer. The network device may power up the one or more components of the network device upon an amount of traffic in a buffer of the network device reaching a threshold.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: August 23, 2016
    Assignee: Maxlinear, Inc.
    Inventors: Curtis Ling, Timothy Gallagher, Sridhar Ramesh
  • Patent number: 9419661
    Abstract: An impulse noise mitigation circuit (INMC) may set a cut-off frequency of each of two high pass filters to bound a frequency bandwidth of a desired signal, wherein a first of the two filters allows frequencies higher than the frequency bandwidth of the desired signal, and a second of the two filters allows frequencies lower than the frequency bandwidth of the desired signal. The INMC may compute and store a mean magnitude separately for a first signal response of the first filter and a second signal response of the second filter. The INMC may select the first filter for impulse noise mitigation when the mean magnitude of the second filter is greater than the mean magnitude of the first filter. The INMC may select the second filter for impulse noise mitigation when the mean magnitude of the first filter is greater than the second filter.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: August 16, 2016
    Assignee: Maxlinear, Inc
    Inventors: Andy Lo, Sugbong Kang
  • Patent number: 9419569
    Abstract: Methods and systems for a pseudo-differential low-noise amplifier at Ku-band may comprise a low-noise amplifier (LNA) integrated on a semiconductor die, where the LNA comprises differential pair transistors with an embedded inductor tail integrated on the semiconductor die. The embedded inductor tail may comprise: a first inductor with a first terminal capacitively-coupled to a gate terminal of a first transistor of the differential pair transistors and a second terminal of the first inductor coupled to second, third, and fourth inductors. The second inductor may be coupled to a source terminal of the first transistor of the differential pair transistors, the fourth inductor may be coupled to a source terminal of the second transistor of the differential pair transistors, and the third inductor may be capacitively-coupled to a gate terminal of the second transistor of the differential pair transistors and also to ground. The second inductor may be embedded within the first inductor.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: August 16, 2016
    Assignee: Maxlinear, Inc.
    Inventors: Abhishek Jajoo, Vamsi Paidi
  • Patent number: 9419858
    Abstract: A cable modem termination system (CMTS) may determine, for a plurality of cable modems served by the CMTS, a corresponding plurality of SNR-related metrics. The CMTS may assigning the modems among a plurality of service groups based on the SNR-related metrics. For any one of the modems, the CMTS may configure physical layer communication parameters to be used by the one of the modems based on a SNR-related metric of a service group to which the one of the modems is assigned. The physical layer communication parameters may include one or more of: transmit power, receive sensitivity, timeslot duration, modulation type, modulation order, forward error correction (FEC) type, and FEC code rate. The CMTS and the modems may communicate using orthogonal frequency division multiplexing (OFDM) over a plurality of subcarriers, and the physical layer communication parameters may be determined on a per-subcarrier basis.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: August 16, 2016
    Assignee: Maxlinear, Inc.
    Inventors: Curtis Ling, Sridhar Ramesh, Timothy Gallagher