Patents Assigned to Micronas GmbH
-
Patent number: 9341463Abstract: A measuring system having a first magnetic field sensor, an encoder, and an evaluation circuit. The first magnetic field sensor and the second magnetic field sensor and the third magnetic field sensor are connected to the encoder. The evaluation circuit has a logic, which is set up to determine the position of the encoder based on a first measurement signal of a first magnetic field sensor and a second measurement signal of a second magnetic field sensor and a third measurement signal of a third magnetic field sensor.Type: GrantFiled: January 14, 2014Date of Patent: May 17, 2016Assignee: Micronas GmbHInventors: Joachim Ritter, Joerg Franke
-
Publication number: 20160131698Abstract: A method for increasing the reliability of transducers, having a first and a second IC, the two ICs have exactly the same or substantially the same monolithically integrated circuit components, each with a sensor and a signal contact designed for bidirectional data transmission and a reference contact and a supply voltage contact. A signal generated as a function of the physical quantity sensed by the relevant sensor is applied to the signal contact. The signal of the first IC is compared with the signal of the second IC by a monitoring device, and then the result of the comparison is communicated to an enable device, and the signal of the first IC is sent by an enable device to the control unit if both signals lie in a predefined useful band.Type: ApplicationFiled: November 10, 2015Publication date: May 12, 2016Applicant: Micronas GmbHInventor: Michael DRESCHER
-
Patent number: 9335773Abstract: A voltage regulator, having a control element, having a current feedback circuit, having a negative voltage feedback circuit, having a component for switching between a first mode as a switching regulator and a second mode as a linear regulator and for generating a digital control signal for triggering the control element in the first mode as a switching regulator based on a sum variable, and for generating a linear control signal for triggering the control element in the second mode as a linear regulator based on the sum variable, whereby in the first mode as a switching regulator and in the second mode as a linear regulator, a first output of the current feedback circuit and a second output of the negative voltage feedback circuit are coupled to form the sum variable.Type: GrantFiled: December 15, 2014Date of Patent: May 10, 2016Assignee: Micronas GmbHInventors: Samiran Halder, Sergej Koschuch
-
Patent number: 9322637Abstract: A measuring system is provided that includes a magnetic field sensor array, an evaluation circuit for evaluating measurement signals of the magnetic field sensor array, and a rotatable encoder that has a mass element to change a magnetic field vector in the magnetic field sensor array. The encoder has a spring element in which the mass element is attached to the spring element. The encoder has a linear guide, and the mass element is guided in a radial direction in the linear guide such that during a rotation of the encoder the mass element can be moved by centrifugal force and the centrifugal force works against the spring force of the spring element. The magnetic field sensor array is arranged toward the encoder to measure a change, caused by the movement of the mass element, in the magnetic field vector.Type: GrantFiled: January 9, 2014Date of Patent: April 26, 2016Assignee: Micronas GmbHInventor: Yan Bondar
-
Publication number: 20160098374Abstract: A method for a deterministic selection of a sensor from a plurality of sensors, having a control unit and multiple sensors connected to the control unit by means of a three-wire bus, wherein the sensors are connected to the three-wire bus through at least two lines in parallel to one another, and a protocol frame in conformity with the SENT specification is used between the control unit and the sensors for a data exchange, and a particular sensor is selected within the protocol frame by the control unit through the predefined duration of a selection signal, wherein the duration of the selection signal is determined by the interval between a first falling signal edge and a second falling signal edge.Type: ApplicationFiled: October 1, 2015Publication date: April 7, 2016Applicant: Micronas GmbHInventor: Michael DRESCHER
-
Patent number: 9291685Abstract: A device for evaluating a magnetic field with an integrated circuit with a magnetic field sensor is provided, which has a first connection, a second connection, and a third connection led out from the housing. A signal conditioning circuit is connected to the magnetic field sensor. A control circuit generates a control signal for controlling the signal conditioning circuit based on a detected transmission signal with a detection circuit for detecting the transmission signal. The signal conditioning circuit generates an analog signal based on a sensor signal and based on the control signal. An evaluation circuit evaluates the analog signal and compares the analog signal to a default value to adjust the signal conditioning circuit via the digital transmission signal such that the analog signal corresponds to the default value.Type: GrantFiled: July 2, 2013Date of Patent: March 22, 2016Assignee: Micronas GmbHInventors: Hans Joerg Fink, Martin Bayer
-
Patent number: 9279702Abstract: A measuring system having a first magnetic field sensor, a second magnetic field sensor, an encoder, and an evaluation circuit to which the first magnetic field sensor and the second magnetic field sensor are connected. The evaluation circuit generates a first signal and a second measurement signal. The encoder generates a second magnetic field change with a second periodicity. The evaluation circuit generates a second signal with the second periodicity from the first measurement signal of the first magnetic field sensor and the second measurement signal of the second magnetic field sensor according to an absolute value function.Type: GrantFiled: January 14, 2014Date of Patent: March 8, 2016Assignee: Micronas GmbHInventors: Joachim Ritter, Joerg Franke
-
Publication number: 20160047680Abstract: A method for increasing a reliability of a transducer is provided. The transducer has a first and a second IC, wherein the two ICs each have substantially the same monolithically integrated circuit components with one sensor apiece, and a signal contact for bidirectional data transmission. A reference contact on each of the two ICs is connected to or disconnected from the signal contact by a controllable switch, and a signal generated as a function of the physical quantity sensed by the relevant sensor is applied to the signal contact. The two ICs are integrated into a common IC package, and a supply voltage contact of the first IC is connected to a first package contact, and the first package contact is connected to a first terminal of a control unit, and the supply voltage contact of the second IC is connected to a second package contact.Type: ApplicationFiled: August 12, 2015Publication date: February 18, 2016Applicant: Micronas GmbHInventor: Michael DRESCHER
-
Publication number: 20160011281Abstract: A Hall effect sensor with multiple Hall effect elements, each of the Hall effect elements having a first contact terminal, a second contact terminal, and a third contact terminal arranged along a straight line. The multiple Hall effect elements are electrically connected in series in a closed circuit. The second contact terminals of the Hall effect elements are supply voltage connections or Hall voltage pickoffs, and the applicable second contact terminal of the Hall effect element is a center contact of the Hall effect element. The Hall effect elements form two pairs, and the Hall effect elements of one pair each measure the same component of a magnetic field and an operating current is impressed on the series circuit in the two Hall effect elements of this one pair, and a supply voltage is applied to the Hall effect elements of the other pair.Type: ApplicationFiled: July 14, 2015Publication date: January 14, 2016Applicants: Micronas GmbH, Albert-Ludwigs-Universitaet FreiburgInventors: Christian SANDER, Oliver PAUL
-
Publication number: 20150369860Abstract: An arrangement for testing integrated circuits includes an integrated test circuit and a cluster which has at least one integrated circuit and a second integrated circuit. The first integrated circuit is provided in a first component region of a wafer, and the second integrated circuit in a second component region. The first component region and the second component region are spaced a distance apart by a scribe line of the wafer. The integrated test circuit is connected to the first integrated circuit via a first test line section, and the second integrated circuit is connected to the first test line section via a first connecting line that has a first well in the semiconductor material, the first well extending continuously in the wafer from the first component region over the scribe line to the second component region, the first well being electrically insulated from a substrate of the wafer.Type: ApplicationFiled: June 22, 2015Publication date: December 24, 2015Applicant: Micronas GmbHInventor: Joachim RITTER
-
Publication number: 20150354984Abstract: A magnetic field measuring device having a semiconductor body with a surface parallel to an x-y plane and having a magnet with a flat main extension surface parallel to the x-y plane, the direction of magnetization changes along the main extension surface due to at least two adjacent magnetic poles, the magnet being rotatable relative to the IC package about an axis of rotation extending in a z direction and the z direction being orthogonal to the x-y plane. An imaginary extension of the axis of rotation passes through the magnet. The semiconductor body has three magnetic field sensors spaced apart from one another on the surface, and each of the magnetic field sensors measures the same component of the magnetic field. All magnetic field sensors are located along the imaginary extension of the axis of rotation within the projection of the main extension surface.Type: ApplicationFiled: June 10, 2015Publication date: December 10, 2015Applicant: Micronas GmbHInventor: Stefan ALBRECHT
-
Publication number: 20150331068Abstract: A Hall sensor including multiple Hall elements which have a first terminal contact and a second terminal contact and a third terminal contact, the multiple Hall elements being electrically connected in series. The first terminal contacts and the third terminal contacts of the individual Hall elements are connected to each other, and the second terminal contacts of the Hall elements are supply voltage terminals or as Hall voltage taps. A beginning of a first branch being electrically connected in series to an end of a second branch, in such a way that the direction of the current flow through the Hall elements of the first branch is counter to the direction of the current flow through the Hall elements of the second branch.Type: ApplicationFiled: May 19, 2015Publication date: November 19, 2015Applicant: Micronas GmbHInventors: Maria-Cristina VECCHI, Martin CORNILS
-
Patent number: 9166145Abstract: A magnetic field sensor device having a semiconductor body, whereby the semiconductor body has a top side and a bottom side, and whereby the semiconductor body has a substrate layer and a passivation layer formed above the substrate on the top side of the semiconductor body, and one or more integrated electronic components are formed in the substrate layer of the semiconductor body, and a Hall plate is provided on the top side of the semiconductor body above the passivation layer, and the Hall plate is formed of a graphene compound.Type: GrantFiled: May 27, 2014Date of Patent: October 20, 2015Assignee: Micronas GmbHInventor: Joerg Franke
-
Publication number: 20150293184Abstract: A sensor device is provided for suppressing a magnetic stray field, having a semiconductor body with a surface formed in an x-y plane, the x-direction and the y-direction are formed orthogonal to one another, and the sensor device has a first pixel cell and a second pixel cell integrated into the surface of the semiconductor body. A first magnetic field sensor detects a magnetic field in the x-direction and a second magnetic field sensor detects a magnetic field in the y-direction. The two pixel cells in a projection along an imaginary lengthening of the axis are arranged at an edge or next to an extension of the magnet in the x-y plane.Type: ApplicationFiled: April 10, 2015Publication date: October 15, 2015Applicant: Micronas GmbHInventors: Timo KAUFMANN, Joerg FRANKE
-
Publication number: 20150293185Abstract: A sensor device for suppressing a magnetic stray field, having a semiconductor body with a surface, formed in an x-y plane, and a back surface. Each circle half of a disk-shaped magnet has two magnetic poles and the magnet is rotatable relative to the IC housing around a z-direction. An imaginary lengthening of the axis penetrates the magnet in the center of gravity of the main extension surface of the magnet. A first pixel cell and a second pixel cell are integrated into the surface of the semiconductor body together with a circuit arrangement, and each pixel cell has a first magnetic field sensor and a second magnetic field sensor. The first pixel cell is spaced apart from the second pixel cell along a connecting line, and the first pixel cell in a projection along an imaginary lengthening of the axis is arranged within the two inner circle segments.Type: ApplicationFiled: April 10, 2015Publication date: October 15, 2015Applicant: Micronas GmbHInventors: Timo KAUFMANN, Joerg FRANKE
-
Patent number: 9153772Abstract: A device for increasing the magnetic flux density includes a semiconductor body and a first magnetic sensor integrated into the semiconductor body, whereby a housing section, which forms a cavity, is arranged above the sensor on the semiconductor surface and the cavity is filled with a ferromagnetic material and the material comprises a liquid.Type: GrantFiled: February 28, 2012Date of Patent: October 6, 2015Assignee: Micronas GmbHInventor: Joerg Franke
-
Publication number: 20150268190Abstract: A method for testing a CMOS transistor with an electrical testing unit, the CMOS transistor being formed in a semiconductor substrate of a semiconductor wafer. A plurality of CMOS transistors are formed on the semiconductor wafer and the electrical testing unit has a support plate and a metal layer formed on the support plate. The CMOS transistor having a first terminal contact, a second terminal contact and a third terminal contact, the second terminal contact configured as an electrically open control contact and in a process step the metal layer is positioned above the semiconductor wafer over the control contact and a potential difference between the first terminal contact and a third terminal contact is generated. The control contact is capacitively coupled by applying a drive potential to the metal layer, and the function of the CMOS transistor is tested by measuring an electrical variable dependent on the capacitive coupling.Type: ApplicationFiled: March 20, 2015Publication date: September 24, 2015Applicant: Micronas GmbHInventor: Oliver KAWALETZ
-
Patent number: 9110097Abstract: A test system having a manipulation device and a test unit. The manipulation device has a receiving unit with a socket that accommodates a packaged integrated circuit, which has a top side and a bottom side. A plurality of electrical terminal contacts are formed on the bottom side. In a first state, the manipulation device provides the integrated circuit to the test unit, and during the first state the test unit is disposed above the top side of the integrated circuit and forms a connection with the manipulation device, and the test unit carries out a function test on the integrated circuit. A sensor device is formed on the top side, and the top side of the integrated circuit is oriented in a direction of the test unit and the electrical terminal contacts are electrically connected to the receiving unit of the manipulation device.Type: GrantFiled: May 20, 2013Date of Patent: August 18, 2015Assignee: Micronas GmbHInventors: Sebastian Becker, Werner Kutscher
-
Patent number: 9097753Abstract: A Hall sensor is provided having a first Hall element with a first terminal contact and with a second terminal contact and with a third terminal contact, a second Hall element with a fourth terminal contact and with a fifth terminal contact and with a sixth terminal contact, a third Hall element with a seventh terminal contact and with an eighth terminal contact and with a ninth terminal contact, and a fourth Hall element with a tenth terminal contact and with an eleventh terminal contact and with a twelfth terminal contact. The first Hall element and the second Hall element and the third Hall element and the fourth Hall element are connectable in series.Type: GrantFiled: July 5, 2012Date of Patent: August 4, 2015Assignees: Micronas GmbH, Albert-Ludwigs-Universitaet FreiburgInventors: Roiy Raz, Patrick Ruther, Timo Kaufmann, Oliver Paul
-
Patent number: 9093237Abstract: A control device is provided that includes a plate and a control unit. The control unit has a rotary unit designed as a transmitter unit and a receiver unit. The transmitter unit has a top surface and a bottom side, wherein a base is formed on the bottom side in a center region and a first magnetizable element or a first magnet for positioning the transmitter unit at a predefined position over the receiver unit is arranged in the center region. In a rest position the transmitter unit rests with the base on the plate and the axis of rotation extends essentially parallel to the normal of the plate, or the transmitter unit is tilted into an operating position such that the base rests only partially on the plate and the axis of rotation is tilted relative to the normal of the plate.Type: GrantFiled: February 4, 2013Date of Patent: July 28, 2015Assignee: Micronas GmbHInventor: Yan Bondar